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CHAPTER 5 

 

 SENSORLESS CONTROLLER DESIGN FOR THE NINE-PHASE IPM

designed based on the main component of the machine circuit. After modelling the nine phase 

converter the controller is designed using the minimum copper loss strategy. The current regulators 

are also designed using the regular dynamic equations of the machine in the rotor reference frame. 

To implement the precise control to the machine the rotor position is needed, therefore the position 





340 

 

1

1

1

1

1

1

1

1

1

� ��

� ��

� ��

� ��

� ��

� ��

� ��

� ��

� ��

inip

hnhp

gngp

fnfp

enep

dndp

cncp

bnbp

anap

SS

SS

SS

SS

SS

SS

SS

SS

SS

 

 

 

 

 

 

 

(5.1) 

 

�:�K�H�U�H�����µ�6xp�¶���D�Q�G���µ�6xn�¶���D�U�H���W�K�H���V�Z�L�W�F�K�L�Q�J���I�X�Q�F�W�L�R�Q�V���R�I���W�K�H���W�R�S���D�Q�G���E�R�W�W�R�P���V�Z�L�W�F�K�H�V���R�I���O�H�J��

�µ�[�¶���R�I���W�K�H���L�Q�Y�H�U�W�H�U�����$�O�V�R���R�X�W�S�X�W��voltages of the inverter can be expressed as: 
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(5.2) 

 

Using equation (5.1), the voltage equations can be rewritten as: 

 

�:�K�H�U�H�����W�K�H���V�Z�L�W�F�K�L�Q�J���I�X�Q�F�W�L�R�Q���R�I���W�K�H���W�R�S���V�Z�L�W�F�K���R�I���H�D�F�K���S�K�D�V�H���µxpS �¶ and the expression 

for the modulation index can be written as: 

 

 

 

 

(5.3) 
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Where: �µVxp�¶ �S�U�H�V�H�Q�W�V���W�K�H���U�H�I�H�U�H�Q�F�H���Y�R�O�W�D�J�H���I�R�U���S�K�D�V�H���µ�[�¶�����µ
minV �¶���L�V���W�K�H���P�L�Q�L�P�X�P���Y�D�O�X�H���R�I��

the nine phase set, �µ maxV �¶�� �L�V �W�K�H�� �P�D�[�L�P�X�P�� �Y�D�O�X�H�� �R�I�� �W�K�H�� �Q�L�Q�H�� �S�K�D�V�H�� �V�H�W�� �D�Q�G�� �µ�D�¶�L�V�� �D�O�V�R�� �J�L�Y�H�Q�� �L�Q��

equation (5.5). 

�:�K�H�U�H���µs�Z �¶���L�V���W�K�H���I�U�H�T�X�H�Q�F�\���R�I���W�K�H���F�R�P�P�D�Q�G���Y�R�O�W�D�J�H�V���D�Q�G���µ�G�¶���L�V���W�K�H���L�Q�L�W�L�D�O angle of the 

modulation index. 

 Substituting the switching function of equation (5.4) in to the voltages of equation (5.3) 

results in equation (5.6).  

�� �� ihgfedcbaxMS xpxp ,,,,,,,,,15.0 � ���  
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Since the machine is controlled in the rotor reference frame the inverter, voltages also 

should be transformed to the rotor reference frame.  
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Equation (5.7) can be represented as equation (5.8). 

Where: 
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5.2.2 Controller Design  

 

In this section, relationship between the reference currents of the q and d axis is generated. 

The q axis current reference can be generated from the speed controller loop and the resulting 

current can be used to generate the d axis current. The desired d axis reference current is generated 

based on the minimum copper loss strategy that is derived using Lagrange optimization method. 

The proper relationship between q and d axis current can be derived based on the machine equations 

in the rotor reference frame. From chapter 3 the machine equations for the salient pole (IPM) in the 

steady state conditions are: 

)( 111 rdrrqsrq irV �O�Z���   
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The stator copper loss can be defined as: 
 

�� ��2

1

2

1
4

9
rqrdsloss iirP ���  

 

(5.13) 
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(5.19) 

 

Equation (5.19) results in: 
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 (5.20) 

 

The equation (5.20) is representing an ellipse. Using MATLAB/EZPLOT the ellipse could 

be plotted as Figure 5.2. 
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(5.23) 

�7�K�H���H�T�X�D�W�L�R�Q�����������������F�R�X�O�G���E�H���F�R�Q�V�L�G�H�U�H�G���D�V���D���T�X�D�G�U�D�W�L�F���H�T�X�D�W�L�R�Q���L�Q���W�H�U�P�V���R�I���µrdi 1
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Figure 5.3: The speed controller loop. 

 

Substituting the electromagnetic torque to the equation (5.26) results in: 
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(5.29) 

The PI controller for the speed controller loop can be designed using the mechanical 

dynamic equation as: 
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The above equation results in: 
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(5.31) 

 

By setting the denominator of the transfer function to be equal to the second order 

Butterworth polynomial the controller coefficients can be designed [161].  

ooip ppKSKS �Z�Z�Z�Z ����� ���� 222   

(5.32) 

 

The speed controller loop has to be at least 10 times faster than the desired rotor speed 

profile [157]. The final desired speed profile is a trapezoidal waveform that has the frequency of up 

to 0.05 (Hz). Therefore, the frequency of the speed controller loop has to be selected bigger than 

0.5 (Hz). Setting �ñ�â 
L �y the correspondent relationship between the denominator of the transfer 

function and the Butterworth polynomial yields: 

 
272 � � opK �Z�Z  

 

(5.33) 
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5.2.4 Current Regulator Design  

 

Using the dynamic equations of the q and d axis voltages in the rotor reference frame, the 

current regulators for controlling the �µ �¶��and �µ rdi 1 �¶��can be designed. The equations are repeated 

here from chapter 3. 

r
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The d axis current controller also can be designed as: 
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Figure 5.5: The d axis current regulator. 

According to the Figure 5.5 the �-�×�æ can be considered as a PI controller according to 

equation (5.47). 

�¸
�¹

�·
�¨
�©

�§ ��� 
S

K
KK id

pdds  

 

 

(5.47) 

 

�� ��rdrd
id

pddsrdddrds ii
S

K
KipLir 11

*

1111 ���¸
�¹

�·
�¨
�©

�§ ��� � �� �G  

 

 

 

(5.48) 

 

�� ��rd
id

pdrd
id

rdpdrdddrds i
S

K
Ki

S
K

iKipLir 1
*

111111 �¸
�¹

�·
�¨
�©

�§
��� ������  

 
 

 

(5.49) 



354 

 

�� ��
1111

2

11

11

1
*

1

dd

id

dd

pds

dd

idpd

id
pddds

id
pd

rd

rd

L
K

L

Kr
pp

L

KpK

S
K

KpLr

S
K

K

i
i

��
��

��

�¸�¸
�¹

�·
�¨�¨
�©

�§ ��

� 
������

�¸
�¹

�·
�¨
�©

�§ ��
�  

 

 

 

 

(5.50) 

The denominator of the equation (5.50) can be set equal to the second order Butterworth 

polynomial to obtain the �µ pdK �¶ and �µ idK �¶.  
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(5.51) 

By substituting the Ld1d1=0.0012 (H), the controller coefficients can be calculated as:  

3294.001.00012.020022 11 � ���u�u� ��� sddopd rLK �Z  

 

 (5.52) 
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measurement and the flux linkages (��q1r �D�Q�G����d1r) are calculated using the stator inductances and 

feedback currents. Since the load torque is not known the TL is set equal to zero which means the 

load torque will be the system disturbance. In this procedure the exact position of the rotor flux 

linkage ( r�T�Ö) is needed. The goal of the next sections of this chapter is to design an estimator to 
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(5.58) 

 

Using the Fourier series of the winding function, the air gap function and also the equation 

(3.4) the self and mutual inductances can be expressed as equation (5.59) [87]. 
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(5.59) 

�:�K�H�U�H���³�N�´���D�Q�G���µ�M�¶���U�H�S�U�H�V�H�Q�W���W�K�H���P�D�F�K�L�Q�H���S�K�D�V�H���Q�X�P�E�H�U��according to Table 5.1, �³ ia �  ́are the 

coefficients of the Fourier �V�H�U�L�H�V�� �R�I�� �W�K�H�� �D�L�U�� �J�D�S�� �I�X�Q�F�W�L�R�Q���� �S�U�H�V�H�Q�W�H�G�� �L�Q�� �H�T�X�D�W�L�R�Q�� �������������� �D�Q�G�� �³iN �  ́

represents the coefficients of the Fourier series of the winding functions. For example, the self-

�L�Q�G�X�F�W�D�Q�F�H�V���R�I���W�K�H���S�K�D�V�H���µ�D�¶���F�Dn be expressed as equation (5.60). 
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(5.69) 

The 
33dq  flux linkage equations are: 
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(5.70) 

The equations (5.69) and (5.70) result in: 
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A low pass filter can remove any remaining high frequency noise that may still lingers in the 

equation (5.86). The output of the filter has a variable magnitude which varies with the rotor speed. 

Normalizing that can be done by using the equation (5.87).  
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(5.87) 

Equation (5.88) presents the signal after normalizing. This signal can be used as the input of 

the observer. 
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(5.88) 

 

5.4 Design of the Position Observer 

 

5.4.1 Design of the Luenberger Observer 

 

The high frequency voltages injected to the stator windings of the machine can generate the 

position dependent signal which is used for the estimation. To extract the information carried by the 

high frequency current a proper estimator needs to be designed. The mechanical dynamic equations 

of the rotor can be used for designing the position estimator. 

Based on Figure 5.7, the mechanical dynamic model of a rotor is:   
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(5.89) 
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Figure 5.7: The rotor of the machine.  

The dynamic equations of the rotor are presented in equation (5.91). Using that, the observer 

can be designed as equation (5.92) which is the standard form of a close loop observer [160]. In 

�W�K�L�V���H�T�X�D�W�L�R�Q���µ�$�¶���U�H�S�U�H�V�H�Q�W�V���W�K�H���V�\�V�W�H�P���P�D�W�U�L�[�����µ�%�¶���L�V���W�K�H���L�Q�S�X�W���P�D�W�U�L�[�����µ�8�¶���L�V���W�K�H���L�Q�S�X�W���R�I���W�K�H���V�\�V�W�H�P����

�µ�&�¶���L�V���W�K�H���R�X�W�S�X�W���P�D�W�U�L�[���D�Q�G���µ�;�¶���U�H�S�U�H�V�H�Q�W�V���W�K�H���V�W�D�W�H���Y�H�F�W�R�U���R�I���W�K�H���V�\�V�W�H�P�� 

CX
 

 

(5.91) 

)�Ö(�Ö�Ö XCYKBUXAX ������� ��  
(5.92) 

In the equation (5.92) the term ��
á is the estimated state variables. The error between the 

estimated and real state and also the derivation of the error are: 

XXe �Ö���  
(5.93) 

XXe �Ö������ ���  
(5.94) 

Substituting the �:�6 and �:�6
à from equations (5. 93) and (5.94) in to the (5.92) results in: 

)�Ö(�Ö XCCXKBUXABUAXe ����������� ��  (5.95) 

Rearranging the equation results in: 

�� �� KCeAeXCCXKXXAe ��� ������� )�Ö(�Ö��    (5.96) 
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The standard form of mechanical dynamic equations can be written as: 
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(5.97) 

The observer is a closed loop one. According to the equation (5.88) the input signals carry 

the information of the position, therefore to be able to compare the output and the input, the output 

of the system has to be the position. Based on that the output is defined as: 
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(5.98) 

Substituting the mechanical dynamic equations to the observer equations results in: 
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(5.99) 

�� ��rrrr Kp �T�T�Z�T �Ö�Ö�Ö
2 ����  (5.100) 

Using the equations (5.99) and (5.100), the position estimator can be built according to 

Figure 5.8. 

To design the observer gains ( 1K , 2K ) the characteristic polynomial of the observer is 

needed. The characteristic polynomial of the observer can be derived using the procedure outlined 

below.  

The errors can be defined as: 
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(5.101) 
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Therefore, the derivative of the rotor speed error can be shown as: 
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��  (5.108) 

By defining a new state variable as equation (5.109) the state space equations of the observer 

can be represented as equation (5.110).  
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The characteristic polynomial of the estimator can be derived as: 
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(5.112) 

Setting the above equation equal to the third order Butterworth polynomial [161] results in:  
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The mechanical parameters of the machine can be found in the Table 5.2 [153]. 

Table 5.2 The mechanical parameters of the machine. 
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oRattedrn �Z�Z�Z �!�!�! ��  (5.114) 

�8�V�L�Q�J���W�K�H���H�T�X�D�W�L�R�Q�������������������W�K�H���µn�Z �¶���L�V���V�H�O�H�F�W�H�G���W�R���E�H����������(rad/sec). Therefore, using the 

equation (5.113) the coefficients of the observer can be designed as: 
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Figure 5.9: (a) The block diagram used to extract signal for observer, (b) The Luenberger 

observer.  

Substituting machine parameters from Table 5.2 in to the equation (5.115), the different 

coefficients of the observer can be calculated as: 
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1250000001 � IK  (5.118) 

�7�K�H���L�Q�S�X�W���R�I���W�K�H���)�L�J�X�U�H�����������L�V���µ�à�å�¶���Z�K�L�O�H���W�K�H���R�E�V�H�U�Y�H�U���L�V���I�H�G���Z�L�W�K���W�K�H���F�X�U�U�H�Q�W�V���J�H�Q�H�U�D�W�H�G���I�U�R�P��

high frequency signal injection. The input signals which are derived in the section 5.2 have the form 

of the equation (5.88) by separating the real and imaginary parts of the signal they can be shown as 

equations (5.119) and (5.120) respectively. 

)6(3 rnq Sini �T�  (5.119) 

 

)6(3 rnd Cosi �T�  
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magnitude to bring the magnitude to unity. The second part is heterodyning to compare the input 

position with the estimated one and calculate the error between the input angle and the estimated 

angle. The third part is the PI controller of the observer to force the observer to operate at zero error 

in steady state. And the last part is the mechanical model of the rotor to calculate the rotor speed 

and the rotor position. 

 

5.4.2 Design of the Low Pass Filters 

 

According to the Figure 5.9 the observer also has a low pass filter which removes the extra 

high frequency components of the signals after the heterodyning process. The low pass filter 

general form is presented in equation (5.124). 
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5.4.3 Robustness of the Observer 
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Figure 5.13: The flow chart for the filter. 
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And from there: 
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(5.161) 

Where:  
 

��  

 

 

(5.162) 

Using the Equation (5.162) the flow chart of the observer can be presented as Figure 5.15. 

 

5.6 Sensorless Nine-Phase IPM Drive 

In this section, the performance of the designed position observer and the controller are 

verified using simulation and experimental results. The simulation is done using 

MATLAB/Simulink and the experiment is done using DSP-FPGA controller.  

5.6.1 Constant Volt/Hz Open-
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addition to the fundamental voltage under a constant Volt/Hz ( 8.1� fV ) open-loop operation. 

The high frequency voltage (980Hz), (5V peak) set is injected in the third sequence channel of the 

machine. In simulation the initial speed of the machine is set at the negative rated and it increases 

to zero and after a short stop, the speed increases to the positive rated speed. Similarly, the proposed 

rotor angle estimation method has been implemented on a 2hp, nine-phase IPM using a DSP-FPGA 

controller which controls the machine via a nine phase voltage source inverter (switching frequency 

of 6 kHz). 
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Figure 5.16: Simulation results for the nine-phase voltages applied to the stator windings. 

The discretized model of the observer has been implemented in the DSP (DSK 

TMS320C6713). The current sensors are connected to the controller with nine Analog/Digital 

converters with the sampling rate of 50 kHz. After generating the high frequency voltages inside 

the DSP they are sent to the FPGA which generates the PWM pulses for the inverter. Figure 5.16 

and 5.17 show stator voltages after high frequency injection for simulation and experimental results 

respectively. 
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Nine-phase currents of the machine for simulation and experimental results are shown in 

Figures 5.18 and 5.19 respectively. From these figures, the effect of the stator magnetic saturation 

 
(a) 

 
(b) 

 
(c) 

Figure 5.17: Experimental results for the nine-phase voltages applied to the stator windings, 

���D�����3�K�D�V�H�V���µ�D�¶�����µ�G�¶���D�Q�G���µ�J�¶�������E�����3�K�D�V�H�V���µ�E�¶�����µ�H�¶���D�Q�G���µ�K�¶�������F�����3�K�D�V�H�V���µ�F�¶�����µ�I�¶���D�Q�G���µ�L�¶ (40 Volt/scale). 
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It is noted that since the high frequency currents are extracted using the sequence analysis 

in the stationary reference frame, there is no need for heterodyning and high pass filtering of the 

 
(a) 

 
(b) 

 
(c) 

Figure 5.19: Experimental results for the nine
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high frequency parts and also they are normalized to have unity magnitude to be compatible with 

the observer.  

 
Figure 5.28: The third sequence of the current in stationary reference frame (iq3, id3) after 

heterodyning and filtering (simulation results). 

 
Figure 5.29: The third sequence of the current in stationary reference frame (iq3, id3) after 

heterodyning and filtering (experimental results). 

The resulting currents after, filtering and normalizing, are shown in the Figure 5.30 and 5.31 

for simulation and experimental results, respectively.  

0 1 2
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Figure 5.30: The third sequence of the current in stationary reference frame (iqn3, idn3) after 

normalizing (simulation results). 

 

Figure 5.31: The third sequence of the current in stationary reference frame (iqn3, idn3) after 

normalizing (experimental results). 

In the third harmonic currents, the measured currents show more ripples than the simulated 

ones. The ripples are mostly coming from sampling noise of the prototype. 
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the negative, positive and also zero rotor speed regions the rotor position observer follows the rotor 

position precisely. 

 
(a) 

 
(b) 

Figure 5.33: (a) The estimated and measured rotor angle (experimental results), (b) The estimation 

error (experimental results). 

The error of the position in Figures 5.32 (b) and 5.33 (b), are mostly due to the natural delay 

of the observer and the filters. It can be seen more clearly at the moments when the angle jumps 

�E�H�W�Z�H�H�Q���µ���¶���D�Q�G���µ���Œ�¶�����$�W���W�K�H�V�H���P�R�P�H�Q�W�V���W�K�H���H�U�U�R�U���D�S�S�H�D�U�V���D�V���E�L�J spikes. At zero speed, when there 

is no jumping, the spikes cannot be seen. Figures 5.34 (a) and 5.35 (a) also show the estimated 
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The simulation and experimental results for vector control are presented in this section. The 

simulation and experiment run for 20 seconds and the load is a damping load according to equation 

(5.164). The speed reference is a trapezoidal one that starts from zero and covers positive and 

negative rotor speeds. 

rLT �Z01.0�  
(5.164) 
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Figure 5.36: The controller of the IPM machine with observer. 

 

The following figures show the drive results. The rotor speeds for simulation and 

experiment are shown in Figures 5.37 and 5.38 respectively. Figure 5.37 (a) shows the reference 
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(a) 

 

 
(b) 

Figure 5.38: (a) Reference and rotor speed (experimental results), (b) The speed error 

(experimental results). 

 

Figure 5.39 show the simulation result of the q axis voltage in rotor reference frame. The 

experimental result of the same voltage is also shown in Figure 5.40. It can be seen that by 

increasing the rotor speed, when the load torque and consequently q axis current increases, the q 

axis voltage also increases to let the machine supply the load. Figures and 5.41 and 5.42 show the 
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output voltages of the controller loops for d axis in rotor reference frame for simulation and 

experimental results respectively. The q and d axis voltages are transformed to real quantities and 

the resulting nine phase voltages are used to generate appropriate nine-phase PWM signals. 

 

 
Figure 5.39: The q axis voltage in the rotor reference frame (simulation result). 

 

 
Figure 5.40: The q axis voltage in the rotor reference frame (experimental result). 
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Figure 5.41: The d axis voltage in the rotor reference frame (simulation result). 

 

 
Figure 5.42: The d axis voltage in the rotor reference frame (experimental result). 

The reference and simulated current of the d axis in rotor reference frame are shown in the 

Figure 5.43. The reference current is generated from the q axis current according to minimum 

copper loss strategy. It can be seen that the machine current tracks the reference. The reference and 
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(a) 

 
(b) 

Figure 5.43: (a) The d axis currents, reference and actual (simulation results), (b) The current 

controller error (simulation results). 
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(a) 

 
(b) 

 

Figure 5.44: (a) Reference and actual currents for the d axis in the rotor reference frame 

(experimental results), (b) The error between the reference and feedback currents (experimental 

results). 

The reference and simulated current of the q axis in rotor reference frame are also shown in 

the Figure 5.45. The reference current is generated from the speed control loop and it is clear that 

the machine current tracks the reference.  
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(a) 

 
(b) 

 
(c) 

Figure 5.50: The nine-�S�K�D�V�H���F�X�U�U�H�Q�W�V���R�I���W�K�H���P�D�F�K�L�Q�H���I�R�U���S�K�D�V�H�V�������D�����µ�D�¶�����µ�G�¶���D�Q�G���µ�J�¶�������E�����µ�E�¶�����µ�H�¶��

�D�Q�G���µ�K�¶���������F�����µ�F�¶�����µ�I�¶���D�Q�G���µ�L�¶�����U�R�W�R�U���V�S�H�H�G���H�T�X�D�O���W�R�����������U�D�G���V�H�F�����H�[�S�H�U�L�P�H�Q�W�D�O��results) (5 A/scale). 



410 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.51: The nine-�S�K�D�V�H���F�X�UÉà
-
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   (a) 

 
(b) 

    

Figure 5.52: (a) The dq3 currents before heterodyning (simulation results), (b) The dq3
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The third sequence of the nine-phase currents need to be extracted to be used for position 
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To extract the low frequency component, the generated signals are multiplied to term �A�?�Ý� �Þ�ç 

the result signals are shown in the Figure 5.54 and 5.55 for simulation and experimental results 

respectively. It can be seen that the currents have a low frequency part which can be extracted using 

a low pass filter. 

(a) 

 
   (b) 

Figure 5.55: (a) The dq3 currents after heterodyning
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From Figures 5.58 and 5.59, it can be seen that the magnitudes of the currents are fixed to 

unity. Now the currents are suitable to be fed to the Lunberger observer that was designed in 

pervious sections. The currents are fed to the Lunberger observer to estimate the rotor angle.  

 
 

Figure 5.58: The normalized currents fed to observer. (simulation results). 

 
 

Figure 5.59: The normalized currents fed to observer. (experimental results). 
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Figures 5.60 and 5.61 show the estimated and rotor angle for simulation and experiment 

along with the estimation error. 

 

 
              (a) 

 
           (b)  

Figure 5.60: (a) Estimated and simulated rotor angle (simulation results), (b) Estimation error 

(simulation results). 
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      (a) 

 
       (b)  
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  (a) 

 
   (b) 

 
   (c) 

 

Figure 5.63: (a) The normalized currents fed to observer around rotor speed zero crossing 

(experimental results), (b) Estimated and measured rotor angle (experimental results), (c) 

The estimation error (experimental results). 
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    (a) 

 
    (b) 

Figure 5.65: (a) The reference and rotor speed (experimental results), (b) Speed error (experimental 

results). 

Figures 5.64 and 5.65 show the reference speed and the rotor speed together along with the 
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Figure 5.66: The electromagnetic torque of the machine (simulation results).  

 

 
 

Figure 5.67: The electromagnetic torque of the machine (experimental results). 

 

The Figure 5.64 (b) and 5.65 (b) show the speed error for simulation and experiment 

respectively. Figures 5.66 shows the electromagnetic torque of machine and the load torque for 

simulation and 5.67 shows the electromagnetic torque of machine for experiment. From both figures 

it can be seen that, by applying the load, machine generated electromagnetic torque to keep the 

rotor speed constant. 

0





426 

 

 

Figure 5.70: The voltage generated by the current regulators d axis of the rotor reference frame 

(simulation results).
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axis current and consequently d axis current, the d axis voltage increases in negative side to let the 

essential d axis current flow to the machine stator. 

 

Figure 5.72: The q axis reference and feedback currents (simulation results). 

 

Figure 5.73: The q axis reference and feedback currents (experimental results). 

Figures 5.72 and 5.73 show the reference and measured currents in q axis of the rotor 

reference frame for simulation and experimental respectively. The q axis current is generated from 

0 5
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the speed error and it can be seen that, the q axis current increases when the load torque is applied 

to the machine shaft. 

Figures 5.74 and 5.75 show the reference and the feedback values for the d axis current for 

simulation and experiment respectively. The reference is again generated from the q axis current 

using the minimum copper loss strategy.  

 

Figure 5.74: The d axis reference and feedback currents (simulation results).  

 

Figure 5.75: The d axis reference and feedback currents (experimental results).  
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(a) 

 
(b) 

 
(c) 

Figure 5.76: (a) The currents of the machine in natural variables (simulation results), (b) and (c) 

Zoomed view before and after load application respectively (simulation results).  
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(a) 

 
(b) 

 
(c) 

Figure 5.77: The nine-phase currents of the machine phases before applying load for phases, 

���D�����µ�D�¶�����µ�G�¶���D�Q�G���µ�J�¶�������E�����µ�E�¶�����µ�H�¶���D�Q�G���µ�K�¶�������F�����µ�F�¶�����µ�I�¶���D�Q�G���µ�L�¶�����H�[�S�H�U�L�P�H�Q�W�D�O���U�H�V�X�O�W�V�����������$�� scale). 
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(a) 

 
(b) 

 
(c) 

Figure 5.78: The nine-phase currents of the machine phases after applying load for phases for 

�S�K�D�V�H�V�������D�����µ�D�¶�����µ�G�¶���D�Q�G���µ�J�¶�������E�����µ�E�¶�����µ�H�¶���D�Q�G���µ�K�¶�������F�����µ�F�¶�����µ�I�¶���D�Q�G���µ�L�¶�����H�[�S�H�U�L�P�H�Q�W�D�O���U�H�V�X�O�W�V�����������$�� 

scale ). 
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Figure 5. 76 shows the simulation results of the stator currents. The effect of the increase in 

q and d axis current of the rotor reference frame can be seen from their peak magnitude. The stator 

currents of experimental results are also shown in Figures 5.77 and 5.78. Figure 5.77 shows the 

currents before applying load torque and Figure 5.78 shows the stator currents after applying load 

torque. There are some ripples on the currents of the experimental results which are due to the 

magnetic saturation of the machine stator and measurement noise. 

 
(a) 

 
(b) 

Figure 5.79: (a) The third sequence of the stator current in the stationary reference frame (simulation 

results), (b) The zoomed view (simulation results).  
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The third sequence currents of the stator are extracted and used for positon estimation. The 

Simulation and experimental results of the third sequence currents are shown in Figures 5.79 and 

5.80 respectively. The currents in Figures 5.81 and 5.82 pass through a heterodyning block then 

 
(a) 

 
(b) 

 

Figure 5.80: (a) The third sequence of the stator current in the stationary reference frame (experimental 

results), (b) The zoomed view (experimental results).  
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The signals of Figures 5.81 and 5.82 need to be normalized to have unity magnitude and be 

fed to the observer. Figures 5.83 and 5.84 show the signals after normalizing for simulation and 

experimental results respectively.   

 
 

Figure 5.83: The normalized currents of the third sequence (simulation results).   
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The signals of Figure 5.83 and 5.84 carry the rotor position information. The rotor position 

now can be extracted using Luenberger observer. The signals are fed to the observer and the results 

are shown in Figures 5.85 and 5.86 for simulation and experiment respectively. These two figures 

show the rotor angle and the estimated one along with the estimation error. 

 
(a) 
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(a) 

 
(b) 

Figure 5.86: (a) The simulated and estimated angle (experimental results), (b) The estimation 

error (experimental results).   
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(a) 

 
(b) 

Figure 5.87: (a) The normalized currents of the third sequence (simulation results), (b) The simulated 

and estimated rotor angle at the starting interval (simulation results).   
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5.6.4 Very Low Speed Run 

 

The last test is the same controller in a very low speed. In this test the machine runs at the 

speed of 0.3 rad/sec and a step load is applied to the machine when it is in the steady state. The 

following figures show the simulation and experimental results. The speed reference starts from the 

zero and goes to a fixed speed at 0.3 (rad/sec) after drive settles down to the steady state conditions 

a step load torque is applied to the rotor for 10 seconds.  

  

 
   (a) 

 
   (b) 

Figure 5.89: (a) The rotor speed and the reference speed (simulation results), (b) The speed 

error (simulation results). 

0 5 10



442 

 

 
  (a) 

 
  (b) 

Figure 5.90: (a) The reference and rotor speed (experimental results), (b) The speed error (experimental 

results). 

Figures 5.89 (a) and 5.90 (a) show the reference and rotor speed for simulation and 

experimental results respectively. From these figures, it can be seen that the drive can track the 
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that, the drive can react to the load torque and generate proper electromagnetic torque to keep the 

rotor speed constant.  

 
Figure 5.91: The load and electromagnetic torque (simulation results). 

 

 

Figure 5.92: The electromagnetic torque of the machine (experimental results). 

The voltages generated by machine controller in rotor reference frame are shown in the 

Figures 5.93 and 5.94 for simulation and experimental results respectively. Again from this Figures 

the reaction of the drive to the changes of the load on the motor shaft can be seen. 
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Figure 5.94: The q and d axis voltage of the machines in the rotor reference frame generated by 

the controller (experimental results).  

The generated voltages are applied to the machine to inject the desired currents to the stator. 

Figures 5.95 and 5.96 show the reference and measured current of q axis 
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(a) 

Figure 5.95: The reference and the feedback currents in rotor reference frame for q axis 

(simulation results). 

 

 
 

Figure 5.96: The reference and the feedback currents in rotor reference frame for q axis 

(experimental results). 

Figures 5.97 and 5.98 also show the reference and measured current of d axis reference 

frame for simulation and experiment respectively. 

 

0 5 10 15 20

0 5 10 15 20
-10

-5

0





447 

 

 
(a) 

 
(b) 

Figure 5.99: The simulation result of nine-phase stator currents, (a) Before applying load 

torque, (b) After applying load torque. 

The currents of the third sequence of stationary reference frame are shown in the Figure 

5.102 and 5.103 for simulation and experiment respectively. These currents are derived from the 

�{ 
H�{ transfer matrix in stationary reference frame. These currents can be used for signal processing 

and position estimation process. From these figures, it can be seen that, the third sequence currents 

have variable magnitudes. The ripples on the magnitudes are caused by the rotor saliency and they 

can be used for position estimation. 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.100: The nine-phase currents of the machine phases before applying load for phases, (a) 

�µ�D�¶�����µ�G�¶���D�Q�G���µ�J�¶�������E�����µ�E�¶�����µ�H�¶���D�Q�G���µ�K�¶�������F�����µ�F�¶�����µ�I�¶���D�Q�G���µ�L�¶�����H�[�S�H�U�L�P�H�Q�W�D�O��results) (5 A/ scale). 
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(a) 

 
(b) 

 
(c) 

Figure 5.101: The nine-phase currents of the machine phases after applying load for phases for phases, 

���D�����µ�D�¶�����µ�G�¶���D�Q�G���µ�J�¶�������E�����µ�E�¶�����µ�H�¶���D�Q�G���µ�K�¶�������F�����µ�F�¶�����µ�I�¶���D�Q�G���µ�L�¶�����H�[�S�H�U�L�P�H�Q�W�D�O���U�H�V�X�O�W�V�����������$�� scale). 
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Figure 5.102: The dq3 currents before heterodyning (simulation result). 

 

 

 

 
Figure 5.103: The dq3 currents before heterodyning (experimental result). 
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Again since the currents after filtering have variable magnitudes which vary with the rotor 

speed they need to be 
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(a) 

 
(b) 

Figure 5.109: (a) Estimated and measured rotor angle (experimental results), (b) The estimation 

error (experimental results). 
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Figure 5.112: The stator phase voltage.    

 

 

 
Figure 5.113: The copper loss of the machine.    
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sections of this chapter the steady state performance of the machine is analyzed using FEMM for 

different stator current levels and operation modes of the controller.   

 

 

 

 

 

 

 

 

 

 

 

 

 

  


