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Figure 5.1. Basic dc-dc converter and associated voltage output   

If the switch is always on, it is easy to see that the average output voltage will equal 

the input voltage; however, as the percentage of time that the switch is off increases, the 

average output voltage will decrease and will obviously become equal to zero when the 

switch is always off.  The scheme thus far described is a buck converter (which has the 

ability to regulate the output voltage from a maximum value equal to the supply voltage to a 

minimum value equal to zero volts); however, it can be seen that while one is able to control 

the average value of the output voltage, the instantaneous voltage fluctuates between zero 

and V1 .  This fluctuation is not acceptable in most of the applications where a regulated dc 

supply voltage is required.     

 The problem of output voltage fluctuation is largely solved by using a low pass filter 

consisting of a series inductor and a parallel capacitor.  Figure 5.2 shows the schematic of 

the basic dc-dc converter with the low pass filter in place.  It can also be seen that a diode  

 (1 -

D)T

D

T

V 1<V

2

>V1  +- - t





 
 

 

109

sawtooth voltage, the switch is turned off.  If the dc-dc converter is to have closed loop 

feedback, then the output voltage would be monitored and compared with a desired output 

voltage ( see Figure 5.4).  The difference between the actual and the desired output voltage 

will regulate the magnitude of the dc control signal and will thus control the duty ratio of the 

system.  

 

Figure 5.3. Control signal and sawtooth voltage waveforms and switching signal sent to turn 

switch on and off 

 

 

 

 

 

Figure 5.4. Schematic diagram of comparators and op-amp used to control signal of a converter 
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5.2 Derivation of a Buck Converter Operating in Steady State 
 
 

The derivation for the steady state equivalent circuit of a buck converter builds upon 

the result found for the equivalent circuit which represents the rectifier feeding a resistive 

load.   Figure 5.5 shows the current flowing through the inductor Lp (see Figure 5.6) along 

with the switching functions associated with the three modes of operation for the buck 

converter. The first mode is when the transistor T1 is on, the second is when T1 is off and 

the current flowing through the inductor Lp is greater than zero, and the third mode is when 

the transistor T1 is off and the current flowing through the inductor Lp is zero. 

Figure 5.5. Inductor current and switching functions for the buck converter 
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Before beginning the derivation for the buck converter, the mathematical basis for the 

fundamental approximation in the state-space averaging approach will be given.  The 

derivation is taken from [35]. 

Let two linear systems described by 

(i) Interval Td1 , 0 < t <to :  

(ii) Interval Td2 , to  < t <T: 

The exact solution of the state-space equations are 
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where

The first approximation solutions are  

  

where I is the identity matrix. 

Therefore, 

which results in the approximate solution 

 

 

This is the same as the solution of the following linear system equation for x(T): 

This equation is the averaged model obtained from the switched models given in 

Equations (5.1 ) and (5.2) .   
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The differential equations for each mode of the buck converter are: 

Mode 1: S1  T1 ON    0 ≤ t ≤ d1T 

For mode 1, shown in Figure 5.7, the systems equations can be written as 

Equation (5.10) can be written   in matrix representation as 

 

where 
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Mode 2:  S2 T1 OFF ( Ip >0)       d1T ≤ t ≤ d2T 

 For mode 2, shown in Figure 5.8,  the systems equations can be written as 

For mode 2, shown in Figure 5.8,  the systems equations can be written as 

where 
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Now, using the result of Equation (5.9) , it is possible to obtain the  single vector 

equation 

where 

  

Supposing  that the quantities x, u, S1 , S2 , S  3, and u vary around their respective 

steady state values, then the following substitutions may be made 

Under these conditions, Equation (5.16 ) becomes 

The last term can be ignored if the changes (perturbations) are much smaller than the 

corresponding steady-state values.  The steady state waveforms can now be separated into dc  

u  , B +  x A = 
dt
dx    (5.16) 
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and ac components.  Of interest here is the dc component which is given as 

 

The dc ( average value) of the switching functions are 

 

and, recognizing that 

 

then d3 may be written as 

.  d - d -1 = d 213    (5.21) 

 

Substituting Equation  (5.21 ) into (5.18 ) and rearranging gives  
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The effective input resistance is defined as the input voltage over the input current, 

i.e. 

 

In terms of the duty cycle and the load resistance RL the effective resistance can be found as 

follows: 

 

In terms of d1 and d3,
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Substituting the value of Vc1 in Equation (5.22) gives 

  ,
L 2

) d +  d( T d 1) - 
d

d+ d( V R = V
p

21
1

1

21
coLco   (5.30) 

which, after simplification yields 

In terms of d1 and d3 this equation becomes 

 

Therefore, knowing the duty cycle d1 , the total period T, the load resistance RL , and 

the value of the inductor Lp , the percentage of time that the converter is operating in 

discontinuous conduction mode may be determined by solving Equation (5.31-b)  for d3 .  If 

the solution for d3 is either zero or negative, then the converter is always in continuous 

conduction mode. 

  For a given load resistance and period, the converter will tend toward discontinuous 

conduction mode as both d1 and Lp are decreased.  At the boundary condition between 

continuous and discontinuous conduction mode, d3 =0, and Equation (5.31-b) may be written 

as  
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22
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It can be seen that, as the duty cycle d1 is decreased, the inductor value must be 

increased to satisfy the equation.  As d1 tends toward zero then the equation may be 

approximated as 

 

Solving for Lp gives 

 

Thus, if one wants to be sure of operating in continuous mode ( which is normally the 

case because of the high stresses placed on the transistors when operating in discontinuous 

mode )  regardless of the duty cycle, then a good ru
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resistance for the buck may be written as 

 

 

The equivalent resistance given in Equation (5.36) may be substituted into Equation 

(4.31) to obtain the equivalent resistance of the buck-rectifier system.  After the substitution, 

the equivalent resistance that the IPM (or any other power source) sees at its terminals is 

given in Equation (5.37) and will be used to predict the performance of the IPM feeding a 

rectifier-buck-resistance load. 
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5.2.1 Examination of Ideal Buck Converter 
 
 

In order to gain an appreciation of the significance of Equation 5.36, various graphs 

are generated with the assumption that the dc voltage into the buck converter is a constant 10 

volts dc, and the load resistance is a constant 10 ohms. 

 

Figure 5.9. Effective resistance vs duty cycle for buck converter 
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Figure 5.9 displays how the effective resistance presented to the source decreases as 

the duty cycle increases.  This trend is the same as that of the boost converter except for the 

fact that the buck effective resistance starts at an infinite resistance at a zero duty cycle and 

ends at the value of the load resistance, and the boost starts at the value of the load resistance 

and ends at a zero effective resistance. 

 
Figure 5.10. Source (input) current vs duty cycle for buck converter 
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Figure 5.10 shows how the source current increases as the duty cycle increases.  At  a 

duty cycle of zero the effective resistance is infinity and no current flows in the circuit.  As 

the duty cycle increases, the source current increases exponentially, but only up a maximum 

value  of Vdc/RL.  

Figure 5.11 shows how the rise of input power as the duty cycle is increased 

 

Figure 5.11  Input power vs duty cycle for buck converter. 
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5.3 Steady State Performance of an IPM Generator Feeding a 

 Rectifier-Buck-Resistive Load 
 
 

5.3.1 Introduction 
 
 

In this section, the measured steady state performance of the IPM generator feeding a 

rectifier-buck-resistive load will be compared with the predicted performance of the system. 

  In order to obtain a full performance curve (meaning that the performance of the IPM 

generator is tested for loads ranging from a light load to a large load) for   the buck 

converter, it is not the load resistance RL 
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5.3.2 Experimental and Predicted Performance Results 
 
 
  Figure 5.13 shows how measured and calculated line to neutral voltage of the 

generator varies as a function of the power out of the generator. If the rectifier-buck system 

truly appeared as a purely resistive load to the IPM, then the measured results would fall 

almost exactly on the calculated results line as they did in Figure 3.5.  

 

Figure 5.13. Measured and calculated generator line to neutral voltage vs generator output 

power for the IPM feeding a rectifier-buck-resistive load 
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5.4 Modeling of the Transistor 
 
 

The modeling of a transistor in Simulink is similar to the model of the diode, except 

that the time the switch is on and the time in which the switch is off is controlled externally, 

and is not dependent on the voltage across or the current through the device.  Figure 5.21 

shows the Simulink block diagram of a UI transistor.  In order for the transistor switch to be 

closed, the voltage across the transistor Vce must be positive, and the control signal Vb
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Figure 5.21. Simulink model of a UI transistor 

 

Figure 5.22. Simulink model of an IU transistor 
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5.5 Comparison of Measured and Simulated Waveforms of IPM Machine Feeding a 
 

 Rectifier- Buck-Resistive Load 
 
 

This section includes the comparison between simulation and measured waveforms 

for the IPM generator feeding a rectifier-buck-resistive load.  Two cases will be looked at.  

The first is when the buck converter is operating in continuous conduction mode, and the 

second is when the converter is operating in discontinuous conduction mode. 

 
5.5.1 Buck Converter in Continuous Conduction Mode 
 
 

This section looks at   measured and simulated waveforms when the IPM is feeding a 

rectifier-buck-resistive load topology for the case when the buck is operating in continuous 

conduction mode.   The frequency of operation of the IPM machine is 30 Hz.  The rectifier 
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 Measurement      Simulation 
 
 
Figure 5.25.  Measured and simulated line to line voltage waveforms for the generator 
feeding a rectifier-buck-resistive 10Ω resistive load. Rotor speed=900 rpm.  Measured 
waveform scale: voltage: 50v/div, time 10ms/div 
 

Figure 5.27 shows the measured and simulated current in the inductor Lp .  It can be 

seen from the figure that, similar to the current Ip depicted in Figure 5.5, the current rises 

almost linearly when the transistor is turned on and falls linearly when the transistor is 

turned off; however, unlike the current in Figure 5.5, measured and simulated currents never  
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 Measurement      Simulation 
 
Figure 5.26.  Measured and simulated generator current  waveforms for the generator feeding 
a rectifier-buck-resistive 10Ω resistive load. Rotor speed=900 rpm.  Measured waveform 
scale: current: 1A/div, time 5ms/div 
 

 

 

 

 

 

 

 

 
Measurement      Simulation 

 

Figure 5.27.  Measured and simulated buck inductor current   waveforms for the generator 
feeding a rectifier-buck-resistive 10Ω resistive load. Rotor speed=900 rpm.  Measured 
waveform scale: current: .1A/div, time .2ms/div 
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 Measurement      Simulation 
 
Figure 5.29.  Measured and simulated generator line to line voltage waveforms for the 
generator feeding a rectifier-buck-resistive 10Ω resistive load. Rotor speed=900 rpm.  
Measured waveform scale: voltage: 50v/div, time 2ms/div 

 

Figures 5.29 and 5.30 show the measured and simulated line to line voltage and line 

current of the generator.  The simulated voltage waveform shows a much higher degree of 

harmonic distortion than the actual measured waveform exhibits.  It is believed that the 

reason for this is that, since the low duty cycle chosen makes the effective resistance which 

the generator sees very high, and, as has been shown for the case of the rectifier, the 

simulation model does not perform as well when the generator is operating under light load.  
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 Measurement      Simulation 
 
Figure 5.30.  Measured and simulated generator line current waveforms for the generator 
feeding a rectifier-buck-resistive 10Ω resistive load. Rotor speed=900 rpm.  Measured 
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  Measurement     Simulation 
 
Figure 5.31.  Measured and simulated inductor current waveforms  for the generator feeding 
a rectifier-buck-resistive 10Ω resistive load. Rotor speed=900 rpm.  Measured waveform 
scale: current: 5A/div, time .2ms/div 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Measurement     Simulation 
 
Figure 5.32.  Measured and simulated transistor current waveforms for the generator feeding 
a rectifier-buck-resistive 10Ω resistive load. Rotor speed=900 rpm.  Measured waveform 
scale: current: 2A/div, time .2ms/div 
 


