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CHAPTER 2 

DERIVATION OF STATE EQUATIONS AND PARAMETER DETERMINATION 

OF AN IPM MACHINE  

 

2.1 Derivation of Machine Equations 
 
 

A model of a 3 phase PM machine is shown in Figure 2.1.  Both the abc and the dq 

axes are shown in the figure.  The magnetizing current, due to the presence of the magnet, is 

represented in Figure 2.1 by the current source if .  The fictitious current source ( along with 

the associated field winding Lmd) will be used in the derivation to follow to obtain an 

expression for the  flux which is equivalent to the flux created by the presence of the magnet 

     It is assumed in the following   derivation that the rotor speed of the machine is 

constant .  Thus, no current   flows in the damper windings contained within the rotor and 

their presence may be ignored.   It is also assumed that the machine is balanced. 

The stator voltage equations of the IPM are [31] 

where va ,  vb ,  vc are the a,b,c stator terminal voltages  , λa ,  λb ,λc are the flux linkages  in 

the abc plane, ia , ib ,ic are the abc stator currents, and r1 is the stator resistance of each phase 
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Figure 2.1. Model of a brushless PM synchronous machine 
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of the stator winding.  Thus, the assumption has been made that the resistances for each 

phase of the stator are the same.      

The flux linkages expressed in terms of the stator and terms of the current are 

 

The      inductances given in Equation (2.2) will be kept in their symbolic form, transformed 

into their equivalent dq axis counterparts, and then be defined in terms of the physical 

construction of machine. 

Due to the salient nature of the rotor, the inductances of Equation (2.2) are functions 

of the position of the rotor and (assuming that the rotor is spinning) are functions of time.  

This means that the inductance parameters are constantly changing - making the analysis of 

the machine very difficult in its present form.  A transformation commonly referred to as 

Park’s transformation allows the equations describing the machine to be transformed into a 

reference frame where the inductances are not functions of time.  The reference frame 

chosen to accomplish this goal is dependent upon the type of machine being looked at.  For a 

synchronous machine, this reference frame is that of the rotor.  In other words, the stator 

voltages, currents, and inductances will be projected onto the rotor side of the machine and, 

thus,  be rotating at the same speed with which the rotor is spinning.  With this 

accomplished, the inductances no longer vary with the position of the rotor. 
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The transformation of a 3 phase balanced voltage, current, or flux linkage from the 

abc to the dq reference plane may be expressed as [32] 

where 

 

and θ denotes the reference frame chosen.  For the rotor reference frame, θ=θr .  Expressing 

the q  d and o terms individually and substituting   θ=θr gives 

where, for balanced conditions, h0 = 0 and the o term will, from this point forward, be 

ignored.  So, using Equation (2.4), the flux linkages may be expressed in the dq plane as 
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Substituting the results of Equations (2.7) and (2.9) into (2.6) gives 

Letting  

then 

 

Therefore, the q-axis voltage can be written as 

 

Similarly, taking the derivative of the d-axis flux linkage of Equation (2.5) gives 
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After rearranging Equation (2.16) and substituting Equation (2.10) into it, the final 

result for the d axis voltage is  

  

In order to obtain the individual self and mutual inductance terms ( given in Equation 

(2.2 )), the parameters may be defined  in terms of the physical construction of the machine , 

i.e. number of windings, physical dimensions, etc. , and then the equations obtained may be 

transformed into the dq reference frame.  Alternatively, as was done in this thesis, the flux 

linkage equations may be transformed directly into the dq rotor reference frame  ( θ equals 

θr)  and the q and d axis inductances may be defined directly in that frame of reference.  

Thus, 

 

where 
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The d and q axis mutual inductances are given as [12] 

 

where Lm is the inductance of a machine with a uniform air gap and no magnets.  This 

inductance is determined from the flux linking with N1 Cw effective turns, and is given as 

 

where all the terms given in Equation (2.21)  are in meter, kilogram, second (MKS) units  

µo = permeability of free space 

m1 = number of phases of the machine 

Ni = number of series turns per phase 

          Cw = a winding factor which is a product of the distribution and pitch factors 

         Di = stator inner diameter 

P = number of poles 

L = core length  

g = effective air gap length. 

  Cq and Cd  are factors which account for the presence of the magnets and are, for an interior 

permanent magnet,  given as 

  ,L C = L
L C = L

mdmd

mqmq               (2.20) 
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where  

ρ = the pole arc 

Rg = reluctance of  the air gap 

Rm = reluctance of the magnet .  

The open circuit magnet flux λe for an IPM machine is given as [12]  

 

where B!
f is the amplitude of the fundamental flux density created by an individual magnet. 

    In summary, the voltage and flux equations needed to analyze a permanent magnet 

under the stated assumptions are 
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and  the subscript s on the q and d axis stator terms has been added,   rs has replaced r1 as 

the symbol used to represent the stator resistance, and the subscript r has been dropped from 

ω. Under steady-state, the derivatives of the state variables of Equation (2.24)  are zero so, at 

steady state the voltage equations may be written as  

A d-q axis schematic diagram representing the equations given in (2.25) is shown in Figure 

2.2 

 Figure 2.2. Schematic diagram representing the steady state q and d axis voltage equations 

of a PM machine 
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Figure 2.3. Schematic diagram of dc test used to determine stator resistance 

 

The stator resistive value rs was found by applying a dc voltage across two terminals 

of the stator and measuring both the voltage and the current which flowed through the 

terminals ( see Figure 2.3).  The stator resistance for a single phase is given as 

The voltages and currents in Equation (2.26) were found by varying a three phase 

balanced resistive load from a high value to a low value and recording the terminal voltage 

and the current output from the generator.  The measurements made were the line to line 

voltages and the phase currents.  In order to convert the voltages and currents into their dq 

components, the torque angle δ was needed.   The power factor of the machine is also needed 

in parameter determination, but, since the generator was feeding a resistive load, the current 

out of the generator was in phase with the voltage at the terminals, so the power factor was 

.  
I 2

V = r
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unity. The torque angle was found by measuring the difference in angle of the voltages of 

a search coil located across phase “a” of the stator and the terminal voltage appearing at the 

stator terminal of phase “a.”  This method was   not an ideal way to measure the torque angle 

because the oscilloscope used to measure the angle between the two voltages gave a varying 

readout even though the load and speed of the generator were constant.  An average of the 

numbers was taken and used as the torque angle.  It would have been much easier (and 

probably more accurate) to have a commercially available torque angle measuring device; 

however, no such device was available.   Nevertheless, the strong corroboration between 

measured and predicted results suggests that the method used was an acceptable means of 

obtaining the torque angle. 

Once the stator voltages, currents, and torque angle are known, the dq voltages and 

currents can be found by the following relations: 

where Vs is the peak line to neutral voltage, Is is the peak stator current, and γ is the sum of 

the torque angle δ and the power factor angle θ.  Since the power factor is unity (since the 

generator is feeding a purely resistive load), then γ is equal to δ.  

  With the dq voltages and currents and the stator resistance known, the inductance 

in the q axis can easily be found and is given as 
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The inductance in the d axis and the magnet flux linkage are not as easy to find as the q axis 

inductance.  The two terms are contained in the same equation and are, in a sense, coupled 

together.   

One method of finding the magnet flux involves running a no load test on the PM 

machine for a range of frequencies and measuring the terminal voltage of the machine and 

the voltage across the terminals of the search coil.  An empirical relationship between the 

search coil voltage and the magnet voltage (and thus the magnet flux linkage) can be 

developed since, at a no load condition, the terminal voltage of the machine is equal to the 

magnet voltage.  Figure 2.4 shows a plot of the rms voltage of the magnet vs. the air gap 

voltage for both the series connection (high voltage) and the parallel connection (low 

voltage) of the stator winding of the PM machine.    

The low voltage connection was not used in 
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After the magnet flux term has been determined (by λ e = E o / ω), then Lds can be 

found by 

The plots of Lqs, Lds, and λ e are given in Figures 2.5-2.8.  The empirical relationships 

of the parameters as a function of peak stator current Is are given as 

In a conventional synchronous machine with a field winding, the d axis inductance is 

larger than the q axis inductance; however, comparing the magnitudes of Lqs and Lds in 

Figures 2.5 and 2.6, it can be seen that Lqs is larger.  This phenomenon, called inverse 

saliency, is caused by the magnet depth appearing as basically an air gap in the d-axis.  As 

the machine is loaded, it can also be seen that the magnet voltage Eo first increases and then 

decreases.  The initial increase in magnet voltage is due to the fact that, at very light loads, 

the bridge becomes highly saturated and much of the magnet flux flows through it and does 

not contribute towards a useful air gap voltage. 

It was mentioned earlier in this section that the reason the parameters were made 

functions of the peak stator current and not the total flux linkage  was that the when the  

.  
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Figure 2.5. Measured values of q axis inductance vs peak stator current 
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Figure 2.6. Measured d axis inductance vs peak stator current 
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Figure 2.7. Measured magnetic flux vs peak stator current 
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Figure 2.8. Measured q axis inductance vs peak mutual flux 
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parameters were plotted as a function of the total mutual flux linkage λmm, there were  

regions in which two possible solutions exist.  An example of this is shown in Figure 2.8 

where the q axis inductance is plotted vs the mutual flux linkage.  It can be seen from the 

figure why determining Lqs  from a given value of λmm would be difficult.  For example, if 

λmm was given as 0.28 Wb, then Lqs could either be 0.1 or 0.15 H.  The same problem was 

present for the parameters Lds and λe as well. 

 


