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Abstract. Albuquerque and Majid [8] have shown how to view Cli ord algebras C?,, , as
twisted group rings whereas Chernov has observed [13] that C
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1. Introduction

The main goal of this survey paper is to show how certain nitgroups, in particular,
Salingaros vee groups [29{31], and elementary abelian gpalZ,)7624(r)-0.6444981[(2)-(a)738u7 03-13.€
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that the \transposition" anti-involution of C’pq introduced in [3{5] is actually the antipode
in the Hopf algebraR![(Z,)"].1

Our standard references on the group theory are [15,17, 2ifijparticular, for the theory
of p-groups we rely on [24]; for Cli ord algebras we use [14,2@,]2and references therein; on
representation theory we refer to [19]; and for the theory dflopf algebras we refer to [25].

2. Clifford Algebras as Images of Group Algebras

Using Chernov's idea [13], in this section we want to show ho@ii ord algebras C'
can be viewed as images of group algebrB$§G] of certain 2-groups. It is conjectured [34]
that the group G, up to an isomorphism, is the Salingaros vee grou@pq [29{31]. These
groups, and their subgroups, have been recently discussed4,5,11, 22, 23].

De nition 1. Let G be a nite group and let F be a eld2. Then the group algebraF[G] is
the vector space

( X )
(1) F[G] = o0; g2F
092G
with multiplication de neq as
X X ' X X X
(2) g9 nh = g h(gh) = h h g9
092G h2G g;h2G g2G h2G

where all 4; » 2 F: [19]

Thus, group algebras are associative unital algebras witlhe group identity element
playing the role of the algebra identity. In the theory of repesentations of nite groups, all
irreducible inequivalent representations are related to @omplete decomposition of the group
algebra overC viewed as aregular C-module (cf. [19, Maschke Theorem]). The theory is
rich on its own. The theory of group characters can then be dged from the representation
theory [19], or, as it is often done, from the combinatorial rguments and the theory of
characters of the symmetric group [28]. Since in this surveye are only interested in nite
groups, we just recall for completeness that every nite gup is isomorphic to a subgroup
of a symmetric group [27].

We begin by recalling a de nition of ap-group.

De nition 2.  Let p be a prime. A groupG is ap-group if every element inG is of orderp¥
for somek 1.

Note that any nite group G of order p" is a p-group. A classical result states that
a center of anyp-group is nontrivial, and, by Cauchy's theorem we know that wery nite
p-group has an element of ordep. Thus, in particular, the center of any nite p-group has an
element of orderp [15,17,27]. In the following, we will be working only with rite 2-groups
such as, for example, the groupZ)" and Salingaros vee group&,.q of order 2*P*a:

Iwe remark that twisted group rings can also be described as c&in special Ore extensions known as
skew polynomial rings [12].

2Usually, F = R or C although nite elds are also allowed. In this paper, we will be looking at the real
Cliord algebras C*,q as images of real group algebras or as real twisted group alges.
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Two important groups in the theory of nite 2-groups and hene in this paper, are the
guaternionic group Qg and the dihedral groupDg (the symmetry group of a square under
rotations and re ections), both of orderjQgj = jDgj = 8: These groups have the following
presentations:

De nition 3.  The quaternionic groupQg has the following two presentations:

(3a) Qs=ha;bja*=1;a>=;babl=a i

(3b) =h;J j %=1;1%2=3%= ;13 = Jli

Thus, Qg = f1;a;a% a% b;ab;db; @by where the group elements have orders as follows:
jaj = 2, jaj = ja% = jb = jag = ja’bh = ja’h = 4; so the order structure ofQg is
(1;1;6);® and the centerZ(Qg) = f1;a’g = Z,. Here, we can choose = a% While the

presentation (3a) uses only two generators, for convenienand future use, we prefer presen-
tation (3b) which explicitly uses a central element of order 2.

De nition 4. The dihedral groupDg (the symmetry group of a square) has the following
two presentations:

(4a) Dg=ha;bja*=0 =1;bab!=ali
(4b) =h; j 4= 2=1; = Y

Thus, Dg = f1;a;a% a% b;ab; db; @by whereja?j = jg = ja = ja?j = ja’h = 2; jaj =
ja’j = 4, the order structure of Dg is (1;5;2); and Z(Dg) = f1,a%g = Z,. Here, we can
choose = b; = a, hence, 22 Z(Dg): Thatis, 2 is our central element of order 2, and
our preferred presentation oDg is (4b).

In the following two examples, we show how one can construdtd Cli ord algebra
C'o2 = H (resp. C'1.1) as an image of the group algebra dPg (resp. Ds).
Example 1. (Constructing H = C'o., asR[Qg]=] )
De ne an algebra map from the group algebraR[Qsg]! H = spangf1;i;j;ijg as follows:
(5) 1701, 7t L 1T I
Then,J =ker = (1+ ) forthe central element of order 2 inQg* so dimgJ =4 and

is surjective. Let : R[Qg]! R[Qsg]=] be the natural mapu 7! u+ J : There exists an
isomorphism' : R[Qg]=J ! H such that' = and

(1=12+J3J = +Jand' ((1?)= ()= 1=( (1)*=i%
(J)=J%+J = +Jand' ( (I))= ()= 1=( Q)*=j%
(J+JID=1J+J1+J =1+ ) +J =J and
(@3 +J)= ©=0= () H+ Q) )=1i +ji:

Thus, R[Qg]=) = (R[Qg]) = H = C'o., provided the central element is mapped to 1
(see also [13]).
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Example 2. (Constructing C'1.; asR[Dg]=])
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Theorem 1 (Chernov). Let G be a nite 2-group of order 2'*" generated by a central

(8a) 2=1; (q)°= = (gp)2 =1; (gp+1)2 = = (gp+q)2 =

(8b) gi=¢,: 9ig= 9;g: i;j =1;::5;n=p+q;

sothatG = f °g* g,"j] «2f01g,k =0;1:::;ng. LetJ = (1+ ) be an ideal
in the group algebraR[G] and let C',.q be the universal real Cli ord algebra generated by

(

1 forl i p;
9a e2=Q(g) 1=" 1= ’
(%) ?=Q(e) 1= P
(9b) ee +ee = 0; 16 1 1 n.

Then, (a) dimgJ = 2"; (b) There exists a surjective algebra homomorphism from the
group algebraR[G] to C',q so thatker = J and R[G]=J = C'p:

Remark 1. Chernov's theorem does not give the existence of the gro@ It only states
that should such group exist whose generators satisfy relas (8), the result follows. It is
not di cult to conjecture that the group G in that theorem is in fact the Salingaros vee
group Gy, that is, R[Gp.q]=) = C 4 (see [34]). In fact, we have seen it in Examples 1 and
2 above.

Chernov's theorem.Observe thatG = f °g;* g,"9] «2f0;19; k=0;1;:::;ng. The

existence of a central element of order 2 is guaranteed by a well-known fact that the center

of any p-group is nontrivial, and by Cauchy Theorem. [27] De ne an glebra homomorphism
: R[G]! C',q such that

(10) 17My 7L g T7le; =1
Clearly, J  ker . Letu2 R[G]. Then,
X
(11) u= ‘it G = uit U
where
X .
(122) u= Do g i=1;2

e

(12b) =( o i W2R™ and e=( 1;:::; W) 2R"™
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Then, since (g
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and a K-valued, whereK = fC’ y4f; spinor norm (; )= T~ ) on S invariant
under (in nite) group G‘F‘)?CI (with Gpq < G ‘r‘n:q) di erent, in general, from spinor norms
related to reversion and conjugation irC ..

Gp,q act transitively on a complete setF, jFj = 29 '« », of mutually annihilating
primitive idempotents wherer; is the Radon-Hurwitz number. See a footnote in
Appendix A for a de nition of r;.

The normal stabilizer subgroupGp.q(f ) Gp.q Of f is of order 2*P*"a » and monomials
m; in its (non-canonical) left transversal together withf determine a spinor basis in
S.

The stabilizer groups G,4(f) and the invariance groupsGIOOI of the spinor norm
have been classi ed according to the signaturep(q) for (p+ g) 9 in simple and
semisimple algebrag’ .

Gp,q permutes the spinor basis elements modulo the commutator syroup Gg;q by
left multiplication.

The ring K = fC’ ,4f is Gpq-invariant.

3.2. Important Finite Subgroups of C'pq In this section, we summarize properties and
de nitions of some nite subgroups of the group of invertibé elementsC",,., in the Cli ord
algebraC’.q: These groups were de ned in [3{5].

Gp,q { Salingaros vee group of ordejGp.qj = 2+P*9,

Gp, = f1, 1g{ the commutator subgroup of Gy,

Let O(f) be the orbit of f under the conjugate action ofG,,,, and let Gp4(f ) be the
stabilizer of f . Let

(25) N = jFj =[Gpyq : Gpq(f)] = JO(f)j = |GpigiTCpiq(f)j =2 ZIOJrq:l-Gp;q(f )i
then N = 2k (resp. N = 2k 1) for simple (resp. semisimpleL ,.q wherek = q rq p
and [Gpq : Gpig(f )] is the index of Gy4(f) In Gpyg.
Gpg(f) Gpg andjGpq(f)j = 2P e » (resp. jGpq(f )j = 2% P*"a ») for simple (resp.
semisimple)C .4

The set of commuting monomialsT = fe; ;:::;€;, g (squaring to 1) in the primitive
idempotentf = 2(1 e,) 31 e,)is p0|nt wise stabilized byGp.q(f ):
Toof) = h LTi=G), hey,:::ei= Gy, (Z2)¥; the idempotent groupof f

with jTpq(f)j = 21K,
Kpg(f) = h Imjm 2 Ki < Gpq(f) { the eld group of wheref is a primitive
idempotent in C'q, K = fC p4f , and K is a set of monomials (a transversal) i8
which spanK as a real algebréa. Thus,
22 p q=0;1,2mod8;
(26) Kpo(f)i= _4 p q=3;7mod8;
"8 p q=4;56moda8

G,q= 192 Cqj T~g)g = 1g (in nite group)

Before we state the main theorem from [5] that relates the albe nite groups to the
Salingaros vee groups, we recall the de nition of aansversal

De nition 7. Let K be a subgroup of a grougs. A transversal = of K in G is a subset
of G consisting of exactly one element(bK) from every (left) cosetbK, and with "(K) =1
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Theorem 2 (Main Theorem). Let f be a primitive idempotent inC’,q and letGp.q, Gpo(f),
Tpa(f), Kpio(f), and G5, be the groups de ned above. L& = C'pf andK = fC ,f .

(i) Elements ofT,4(f) and K,.4(f ) commute.
(i) Tpo(fF)\ Kpgo(f) = Gg;qz f 1g.
(iii) Gpya(f) = Tpq(f )Kpia(f) = Kpg(f ) Tpia(f ).
(V) 1Gpa(f)i = IToa(f)Kpa(f)i = 2 Toia(f )i K pg(F)i.
(V) Gpg(f)  Gpgs Tpig(f)  Gpygy @and Kypig(f)  Gpyg. In particular, Tpq(f) and Kp.o(f)
are normal subgroups oG (f ).

(vi) We have:
(27) Gpa(f)=Kp(f) = Tpia(f)=Cpg;
(28) Gpig(f)=Tpa(f) = Kpg(f)=G:
(vii) We have:
(29) (Gpia(f )=Gp.g) A Tpia(f )=Cpg) = Gpig(f )=Toa(f) = Kpio(f)=F 1g

and the transversal ofT,.(f ) in G,4(f) spansK over R modulof .
(viii) The transversal ofGp4(f) In G,,q SpansS over K modulof .
(ix) We have(Gpq(f)=Tpo(f)) (Gpg=Tpq(f)) and

(30) (Gpig=Tpig(F ) =H(Gpig(f )=Tpiq(f)) = Gpig=Gpig(f)

and the transversal ofT,,4(f ) in Gp,q spansS over R modulof .
(X) The stabilizer Gp,4(f ) can be viewed as

\
(31) Gp(f) = Copq (X) = Copq (Tpio(f))

X2Tpq(f)

where Cg,, (X) is the centralizer ofx in G,q and Cg,, (Tp,q(f)) is the centralizer of

3.3. Synfhary of Some Basic Properties of Salingaros Vee Groups
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Theorem 3. LetSGp;OI Cpq- Then,

2f 1g= 2, fp q 0246 (mod8)
(32) Z(Gpyq) = >f 1, g9g=2Z, Z, ifp g 15 (mod8);
f 1L g=24 ifp q 37 (mod 8y

as a consequence & (C ,q) = flg (resp. 1, g) when p+ g is even resp. odd)
where = eje; e,; n= p+ q;is the unit pseudoscalar inC' ..

In Salingaros' notation, the ve isomorphism classes denetl asNox 1; Nok; 2« 1, 2k Sk
correspond to our notationGy,q as follows:
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De nition 9  (Dornho [15]). A nite p-group P is extra-special if (i) P% = Z(P); (ii)
jPg = p; and (iii) P=P°is elementary abelian.

Example 4. (Dg is extra-special)
Dg= ha;bja*= ¥ =1;bab!= a li is extra-special because:
Z(Dg) = Dg = [Dg, Dg] = mzi, jZ(Dg)j = 2,
DgzDg = DBZZ(DB) = hia?i ; ama?i ; bha?i ; abe?ii = Zo Zy:
Example 5. (Qg is extra-special)
Qs=ha;bja*=1;a%= IP?;bab! = a !i is extra-special because:

Z(Qs) = QF =[Qg; Qs] = M4, jZ(Qg)j = 2;
Qs=Q) = Qs=Z(Qs) = hta?i;ahe?i; bre?i;abelii = Z, Z»:

Let us recall now de nitions of internal and external centraproducts of groups.
De nition 10  (Gorenstein [17])

(1) A group G is aninternal central product of two subgroupsH and K if:
(@) [H;K]= hii;
(b) G = HK;
(2) A group G is an external central productH K of two groupsH and K with H;
Z(H) and K;  Z(K) if there exists an isomorphism : H; ! K; such that G is
(H K)=N where
N =f(h; (h %) jh2Hg
Clearly: N (H K)andjH Kj=jHjjKjgNj j H Kj=jH]jjKj:
Here we recall an important result on extra-specigl-groups as central products.
Lemma 1 (Leedham-Green and McKay [24]) An extra-specialp-group has ordemp?*! for

some positive integen, and is the iterated central product of non-abelian groupd order p3.

As a consequence, we have the following lemma and a corollafyor their proofs,
see [11].

Lemma 2. Qg Qg= Dg Dg Dg Qg, whereDg is the dihedral group of order 8 ands
is the quatern021(h)-1.87.775(t)3.80021(h)-1.87468(e)-352.995(q)8.35029(u06.296([)-9.06463(2)7.77!
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2: Dg Dg Dg Qg.

where it is understood that these are iterated central prochs; that is, Dg Dg Dg is really
(Dg Dg) Dg and so on.

Thus, the above theorem now explains the following theorenud to Salingaros regard-
ing the iterative central product structure of the nite 2-groups named after him.

Theorem 5 (Salingaros Theorem [31]) Let N1 = Dg, N» = Qg, and (G) ¥ be the iterative
central productG G G (k times) of G. Then, for k 1

(1) N2 1= (N1) ¥=(Dg) ¥,

(2) Nak = (N1) ¥ Np=(Dg) & D Q,

B) x1=Nx1 (Zz Z)=(Dg)k (Zo Zp),

(4) a=Nax (Zz Z2)=(Dg) * Y Qg (Z2 Zy),

(5) Sk = Nok 1 Zs= Ny Zs=(Dg)* Zs=(Dg) * Y Qg Za.

In the above theorem:

Z,; Z4 are cyclic groups of order 2 and 4, respectively;
Dg and Qg are the dihedral group of a square and the quaternionic group
Z, Z,is elementary abelian of order 4;
Ny 1 and Ny are extra-special of order 2*1: e.g.,N; = Dg and N, = Qg;
ok 1, o2k, Sk are of order 2k+2
denotes the iterative central product of groups with, e.g(Dg) ¥ denotes the iter-
ative central product of k-copies ofDg, etc.,

We can tabulate the above results for Salingaros vee grou@s. of orders 256 (p+q 7)
(Brown [11]) in the following table:

Table 2. Salingaros Vee Group$Gpq 256

Isomorphism Class Salingaros Vee Groups
N 2« No = Go0; N2 = Qs = Go2; Na= Ga0; Ne = Geo
Nok 1 N; = Dg = Gz0; N3 = Gz1; Ns = Gog
2k 0= Gro; 2= Gos; 4= Gso; 6= Ge1
2 1 1= Gz1; 3= Gz, 5= Goyz
Sk So = Goa; S1= Gz S2 = Gaa; Sz = Gryo

5. Clifford Algebras Modeled with Walsh Functions

Until now, the nite 2-groups such as the Salingaros vee grps G, have appeared
either as nite subgroups of the group of unitsC" .., in the Cliord algebra, or, as groups
whose group algebra modulo a certain ideal generated by 1 Hfor some central element
of order 2 was isomorphic to the given Cli ord algebreC ,.: In these last two sections, we



14 ON CLIFFORD ALGEBRAS AND RELATED FINITE GROUPS AND GROUP A LGEBRAS
recall how the (elementary abelian) group4,)" can be used to de ne a Cli ord product on
a suitable vector space.

In this section, we recall the well-known construction of te Cli ord product on the
set of monomial termse,
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Remark 2. Observe that if the scalar factor in front ofe, , in (37) were set to be identically
equal to 1, then we would have,e, = eye, for any e,; e, 2 A @ Thus, the algebraA would be
isomorphic to the (abelian) group algebr&R[G] whereG = (Z;)": That is, the scalar factor
introduces a twist in the algebra product inA and so it makesA ; hence the Cli ord algebra
Cp.q; isomorphic to the twisted group algebraR'[(Z2)"].

Formula (37) is encoded as a procedummulWalsh3in CLIFFORD
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7. Conclusions

As stated in the Introduction, the main goal of this survey pa
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Furthermore, C',,q has a complete set o such primitive mutually annihilating
idempotents which add up to the unit§ of C .

(d) When (p qg)mod 8is 0;1;2; or 3;7, or 4;5;6, then the division ringK = fC" ,.f
is isomorphic toR or C or H, and the mapS K'! S;(; ) 7! de nes a right
K-module structure on the minimal left idealS = C .4f:

(e) When C'q is simple, then the map

(41) Chogq! ENdk(S); u7! (u); (W =u
gives an irreducible and faithful representation of .4 in S:
(f) When C,4 is semisimple, then the map
(42) Chpq! Endg (S $); u7' (u; (u =u

gives a faithful but reducible representation & in the double spinor spac& S
where S = fuf ju 2 Cpe0, S = fufju 2 Cpq0 and * stands for the grade-
involution in C',q: In this case, the idealS S
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