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Proposition 1. Let V be a G-module, W



the conjugacy classes of the dihedral groupD2n . [12]

Example 2. Consider the dihedral groupD2n = hr; p : r n = p2 = ( rp)2 = ei of
order 2n. When n is odd, D2n has 1



Proposition 3. Let G have k conjugacy classes with representativesg1; g2; : : : ; gk .
Also, let � and  be some characters ofG. Then, h�;  i = h ; � i , and

h�;  i =
1

jGj

X

g2 G

� (g) (g� 1) =
kX

i =1

� (gi ) (gi )
jCG (gi )j

(7)

Theorem 4. Let � and � be irreducible characters of a groupG. The characters are
orthonormal with respect to the inner product, i.e., h�;  i = � �; :

As a consequence of the above theorem, several results can bestated in relation
to representations, irreducibility, etc. The following th eorem will be used extensively



Example 3. Let G = Sn : Of course it is well known that the number of conju-
gacy classes for anySn equals the number of partitions ofn: Furthermore, each
class consists of permutations having the same cycle structure because the action of
conjugation preserves the cycle structure.

Example 4. Let G = D2n : The number of conjugacy classes for the dihedral group
was discussed in Example 2. For example,D6 and D8



2.1. General de�nitions and properties

The vee groups were introduced by Salingaros in [18{20]. They were more recently
studied in [2{4,22] where they were denoted asGp;q . In particular, these groups are
central extensions of extra-special 2-groups. [6,9{11,13,22]

De�nition 3. Let C`p;q be the real Cli�ord algebra of a non-degenerate quadratic
form with signature (p; q) and let B = f ei j 0 � j i j � ng be a basis forC`p;q

consisting of basis monomialsei = ei 1 ei 2 � � � ei k , i1 < i 2 < � � � < i k ; for 0 � k � n
wheren = p+ q:



where � = e1e2 � � � en ; n = p + q; is the unit pseudoscalar inC`p;q . This leads to the
following conclusion (see also [22]).

Theorem 8. Let Gp;q � C`p;q . Then,

Z (Gp;q ) =

8
>><

>>:

f� 1g �= Z2 if p � q � 0; 2; 4; 6 (mod 8);

f� 1; � � g �= Z2 � Z2 if p � q � 1; 5 (mod 8);

f� 1; � � g �= Z4 if p � q � 3; 7 (mod 8):

(13)

The following result implies that the vee groups of order 22 are abelian. For the
proof of this proposition, see [16].

Proposition 5. If p is a prime, then every groupG of order p2 is abelian.

It is worth to know the order relation of the normal subgroups of the Salingaros'
vee groups.

Proposition 6. If a group G is of order jGj = pn , then G has a normal subgroup
of order pm for every m � n.

So, this result tells that Gp;q of order 2p+ q+1 has a normal subgroup of order 2m for
any m � p + q + 1, which implies that Gp;q are not simple groups.

2.2. Conjugacy classes

In this section we discuss the conjugacy classes ofGp;q using Theorem 8. It is con-



Theorem 9. Let N be the number of conjugacy classes inGp;q : Then,

N =

(
1 + 2p+ q if p + q is even;

2 + 2p+ q if p + q is odd:
(16)

Proof.



The following theorem gives the number of inequivalent representations of degree
one of the groupGp;q .

Theorem 10. Let M be the number of inequivalent representations of degree one
of Gp;q . Then,

M =

(
2 � 2p+ q = 4 if p + q = 1;

2p+ q if p + q � 2:
(17)

Proof. From Theorem 2, the number of degree one representations ofGp;q is the
index of its commutator subgroup [Gp;q : G0

p;q ]. When p + q = 1, the commutator
subgroup G0

p;q = f 1g and so M = [ Gp;q : G0
p;q ] = (2 � 21)=1 = 4. For p + q � 2,

G0
p;q = f 1; � 1g, so M = [ Gp;q : G0

p;q ] = (2 � 2p+ q)=2 = 2p+ q, as desired.

Note that Maschke's Theorem 1 gives the decompositionC[Gp;q ] = � i
N mi V ( i ) and

from Proposition 4, one getsjC[Gp;q ]j =
NP

i =1
mi

2. From the above theorem, provided

that M is the number of degree one representations of the group, thedimension of
the group algebraC[Gp;q ] can be rewritten as

jC[Gp;q ]j = M +
NX

i = M +1

m2
i :(18)

Thus, the di�erence N � M is the number of inequivalent irreducible representations
of Gp;q with degree two or more. This can be formally stated as the following result.

Theorem 11. Let L be the number of inequivalent irreducible representationswith
degree two or more ofGp;q . (i) Let p + q � 2. If p + q is even, thenL = 1 otherwise
L = 2 . (ii) When p + q = 1 , then L = 0 :

Proof. The proof follows immediately from Theorems 9 and 10.

In the remainder of this section, we give the order structureand conjugacy classes
of Salingaros' vee groups of orders 4, 8, and 16.

Example 6. Consider the abelian groupsG1;0 and G0;1: The number of conjugacy
classes isN = 2 + 2 1 = 4 as predicted by Theorem 9, and the conjugacy classes are:

K 1 = f 1g; K 2 = f� 1g; K 3 = f e1g; K 4 = f� e1g:(19)

Since the groupsG1;0 and G0;1 have the same conjugacy classes, what distinguishes
them is their order structure. The order structure of these groups is summarized
in Table 2 where C.O.S. and G.O.S. give the center order structure and the group
order structure, respectively, of each group. Also,2Mat(1 ; R) denotes Mat(1 ; R) �
Mat(1 ; R).

[10]



Tab. 2: Vee groups Gp;q of order 4 for p + q = 1

(p,q) Group C`p;q Center � 2 C.O.S. G.O.S. L M N
(1; 0) G1;0 = D4

2Mat(1 ; R) Z2 � Z2 +1 (1; 3; 0) (1; 3; 0) 0 4 4
(0; 1) G0;1 = Z4 Mat(1 ; C) Z4 � 1 (1; 1; 2) (1; 1; 2) 0 4 4

Example 7.



Tab. 4: Vee groups Gp;q



One needs to �nd four vectors u1; u2; u3; and u4 which span 1-dimensional
G1;0-invariant subspacesV (1) ; V (2) ; V (3) ; and V (4) such that

C[G1;0] = V (1) � V (2) � V (3) � V (4)(22)

and V ( i ) = spanf u i g; i = 1 ; : : : ; 4: Notice that all V ( i ) are of dimension 1 since
the group is abelian and all irreducible modules are one dimensional. The following
algorithm can be used to �nd the basis vectors.

Algorithm 1.

1: Let G = S �= G1;0 and V = C[S] �= C[G1;0]:

2: Let u1 be the sum of all basis elements inV and de�ne V (1) = spanf u1g. Such
subspace always carries the trivial representation and it is G-invariant since
gu1 = u1 for every g 2 G.

3: Compute a basis for the orthogonal complement ofV (1) in V and rename this
complement asV . This orthogonal complement is obviously3-dimensional and
it is G-invariant by Proposition 1.

4: Using Groebner basis technique [8], �nd a1-dimensional G-invariant subspace
V (2) in V and �nd its spanning vector u2:

5: Find a 2-dimensional orthogonal complement ofV (2) in V . Call this comple-
ment V . By the same reasoning, it isG-invariant.

6: Find a 1-dimensional G-invariant subspaceV (3) in V di�erent from V (2) and
its spanning vector u3:

7: Find a basis for the orthogonal complementV (4) of V (1) � V (2) � V (3) in C[G1;0]
and its spanning vectoru4:

8: The algorithm terminates since the dimension ofC[G1;0] is �nite.

From the above procedure, one obtains all basis vectorsu i as linear combinations of
the standard basisB = f 1; � 1; e1; � e1g of C[G1;0] as follows:

V (1) = spanf u1g; u1 = (1)1 + (1)( � 1) + (1)( e1) + (1)( � e1);

V (2) = spanf u2g; u2



from the following character table.

char/class K 1 K 2 K 3 K 4

� (1) 1 1 1 1
� (2) 1 � 1 � 1 1
� (3) 1 � 1 1 � 1
� (4) 1 1 � 1 � 1

(24)

The explicit matrix representations are shown in Table 12 in Appendix B. Note
that in the character table, rows and columns are orthonormal. Let � ( i ) denote
the character of the representationX ( i ) : So, for example, the inner product of the
characters � (2) and � (3) from the above table is computed as follows:

h� (2) ; � (3) i =
1
4

4X

i =1

jK i j�
(2)
K i

� (3)
K i

=
1
4

((1)(1) + ( � 1)(� 1) + ( � 1)(1) + (1)( � 1)) = 0

sincejK i j = 1 for each class. This veri�es the character orthogonality relation of the



from the character table.

char/class K 1 K 2 K 3 K 4

� (1) 1 1 1 1
� (2) 1 � 1 i � i
� (3) 1 1 � 1 � 1
� (4) 1 � 1 � i i

(27)



2: Apply Algorithm 1 to �nd vectors u1; u2; u3; u4 providing bases for the one-
dimensional G-invariant submodulesV (1) ; V (2) ; V (3) ; V (4) in V .

3: Find a basis for the orthogonal complement ofV (1) � V (2) � V (3) � V (4) in V
and call it V . It is 4-dimensional.

4: Using Groebner basis technique, �nd any2-dimensional G-invariant subspace
in V and call it V (5) . That is, �nd its basis vectors u5 and u6:

5: Find a basis for the orthogonal complement ofV (5) in V and call it V (6) : That
is, �nd its spanning vectors u7 and u8:

6: The algorithm terminates when all eight vectorsu1; : : : ; u8 are found and these
vectors provide a basis for the decomposition ofC[G2;0]:

Once the decomposition ofC[G2;0] has been found, one can compute all irreducible
representationsX ( i ) ; i = 1 ; : : : ; 6; of G2;0 in the six invariant submodules V ( i ) : The
degree-one representationsX (1) ; X (2) ; X (3) ; and X (4) are all inequivalent since their
characters are di�erent as shown in the character table below. The two irreducible
representationsX (5) and X (6) of degree two are equivalent. All representations are
displayed in Table 14 in Appendix B. The extended character t



3.2.2. The extra-special groupG0;2 = Q8 = N2

The group G0;2 is generated by� 1, e1 and e2 with e2
1 = e2

2 = � 1; e1



where V ( i ) = spanf u i g; i = 1 ; : : : ; 8; are one-dimensional while

V (9) = spanf u9; u10g; V (10) = spanf u11; u12g;

V (11) = spanf u13; u14g; V (12) = spanf u15; u16g(33)

are two-dimensional subspaces carrying two pairwise equivalent representations ac-
cording to Proposition 4, Theorem 10 and Theorem 11.

The basis vectorsu i are displayed in (47) in Appendix B. They have been found
by using the above two algorithms.

Once the decomposition ofC[G3;0] has been determined, one can compute all ir-
reducible representationsX ( i ) of G3;0. The representations are displayed in Table 16
in Appendix B. The extended character table for G3;0 is as follows:

char/class K 1 K 2 K 3 K 4 K 5 K 6 K 7 K 8 K 9 K 10

� (1) 1 1 1 1 1 1 1 1 1 1
� (2) 1 1 � 1 � 1 1 1 � 1 1 � 1 � 1
� (3) 1 1 � 1 � 1 1 � 1 1 � 1 1 � 1
� (4) 1 1 1 1 1 � 1 � 1 � 1 � 1 1
� (5) 1 1 � 1 � 1 � 1 1 1 � 1 � 1 1
� (6) 1 1 1 1 � 1 1 � 1 � 1 1 � 1
� (7) 1 1 1 1 � 1 � 1 1 1 � 1 � 1
� (8) 1 1 � 1 � 1 � 1 � 1 � 1 1 1 1
� (9) 2 � 2 2i � 2i 0 0 0 0 0 0
� (10) 2 � 2 � 2i 2i 0 0 0 0 0 0
� (11) 2 � 2 � 2i 2i 0 0 0 0 0 0
� (12) 2 � 2 2i � 2i 0 0 0 0 0 0

(34)

Note that X (9) �= X (12) and X (9) �= X (12) since their characters are the same. To
illustrate orthogonality of the characters, consider the inner product of the characters
� (2) and � (3) :

h� (2) ; � (3) i =
1
16

10X

i =1

jK i j�
(2)
K i

� (3)
K i

=
1
16

(1 � (1)(1) + 1 � (1)(1) + 1 � (� 1)(� 1) + 1 � (� 1)(� 1)

+ 2 � (1)(1) + 2 � (1)( � 1) + 2 � (� 1)(1)

+ 2 � (1)( � 1) + 2 � (� 1)(1) + 2 � (� 1)(� 1))

= 0 :(35)

which veri�es the character orthogonality relation of the � rst kind. In a similar
manner one can verify the character relation of the second kind.

Since the groupG1;2 belongs to the same classS1 asG3;0; it will not be discussed
separately.

[18]



3.3.2. The groupG2;1 = 
 1

The group G2;1 is generated by� 1, e1, e2 and e3 with e2
1 = e2

2 = 1 and e2
3 = � 1;

ei ej = � ej ei ; i 6= j; while the group S � S16 isomorphic to G2;1 is generated by the
permutations of S16 as shown in Table 9 in Appendix A.

The decomposition ofC[G2;1] looks the same as that ofC[G3;0] displayed in (32),
while the basis vectorsu i for this decomposition are displayed in (49) in Appendix B.
They have been found by using the above two algorithms.

Once the decomposition ofC[G2;1] has been found, one can compute all irre-
ducible representationsX ( i ) of G2;1. The representations are displayed in Table 17
in Appendix B. The extended character table for G2;1 is as follows:

char/class K 1 K 2 K 3 K 4 K 5 K 6 K 7 K 8 K 9 K 10

� (1) 1 1 1 1 1 1 1 1 1 1
� (2) 1 1 � 1 � 1 1 1 � 1 1 � 1 � 1
� (3)



The extended character table forG0;3 is as follows:

char/class K 1 K 2 K 3 K 4 K 5 K 6 K 7 K 8 K 9 K 10

� (1) 1 1 1 1 1 1 1 1 1 1
� (2) 1 1 � 1 � 1 1 1 � 1 1 � 1 � 1
� (3) 1 1 � 1 � 1 1 � 1 1 � 1 1 � 1
� (4) 1 1 1 1 1 � 1 � 1 � 1 � 1 1
� (5) 1 1 � 1 � 1 � 1 1 1 � 1 � 1 1
� (6) 1 1 1 1 � 1 1 � 1 � 1 1 � 1
� (7) 1 1 1 1 � 1 � 1 1 1 � 1 � 1
� (8) 1 1 � 1 � 1 � 1 � 1 � 1 1 1 1
� (9) 2 � 2 � 2 2 0 0 0 0 0 0
� (10) 2 � 2 2 � 2 0 0 0 0 0 0
� (11) 2 � 2 � 2 2 0 0 0 0 0 0
� (12) 2 � 2 2 � 2 0 0 0 0 0 0

(37)

Note that X (9) �= X (11) and X (10) �= X (12) since their characters are the same.

4. Conclusions

Due to the renewed interest in the relationship between �nite Salingaros' vee groups
G = Gp;q and Cli�ord algebras, the main goal of this paper has been to show how one
can construct irreducible representations of these groupsby decomposing their regu-
lar modules. In the process, two algorithms have been formulated which have allowed
us to completely decompose regular modules of groups of orders 4, 8, and 16 into
irreducible0



A. Images of the generators of the vee groups

In this Appendix, we show images of the generators of the vee groups Gp;q for
p + q � 3 in the symmetric groups Sn where n = 2 1+ p+ q:

Tab. 5: Generators for G1;0 and G0;1 in S4

G1;0 Order G0;1 Order
� 1 (1; 2)(3; 4)

(1



Tab. 9: Generators for G2;1 in S16

G2;1 Order
� 1 (1; 2)(3; 4)(5; 6)(7; 8)(9; 10)(11; 12)(13; 14)(15; 16) 2
e1 (1; 3)(2; 4)(5; 9)(6; 10)(7; 11)(8; 12)(13; 15)(14; 16) 2
e2 (1; 5)(2; 6)(3; 10)(4; 9)(7; 13)(8; 14)(11; 16)(12; 15) 2
e3 (1; 7; 2; 8)(3; 12; 4; 11)(5; 14; 6; 13)(9; 15; 10; 16) 4

Tab. 10: Generators for G1;2 in S16

G1;2 Order
� 1 (1; 2)(3; 4)(5; 6)(7; 8)(9; 10)(11; 12)(13; 14)(15; 16) 2
e1 (1; 3)(2; 4)(5; 9)(6; 10)(7; 11)(8; 12)(13; 15)(14; 16) 2
e2 (1; 5; 2; 6)(3; 10; 4; 9)(7; 13; 8; 14)(11; 16; 12; 15) 4
e3 (1; 7; 2; 8)(3; 12; 4; 11)(5; 14; 6; 13)(9; 15; 10; 16) 4

Tab. 11: Generators for G0;3 in S16

G0;3 Order
� 1 (1; 2)(3; 4)(5; 6)(7; 8)(9; 10)(11; 12)(13; 14)(15; 16) 2
e1 (1; 3; 2; 4)(5; 9; 6; 10)(7; 11; 8; 12)(13; 15; 14; 16) 4
e2 (1; 5; 2; 6)(3; 10; 4; 9)(7; 13; 8; 14)(11; 16; 12; 15) 4
e3 (1; 7; 2; 8)(3; 12; 4; 11)(5; 14; 6; 13)(9; 15; 10; 16) 4

For the groups of order 4, all representations are inequivalent, and are shown in
Tables 12 and 13.

In Table 12, the irreducible representationsX ( i ) of G1;0 are realized in irreducible
G1;0-invariant submodules of the group algebraC[G1;0] which is decomposed as
follows:

C[G1;0] = V (1) � V (2) � V (3) � V (4) :(38)

The one-dimensional submodulesV ( i ) are spanned by the corresponding vectorsu i ,
i = 1 ; : : : ; 4: The coordinates of these vectors in the basisB = f 1; � 1; e1; � e1g are
as follows (:

V (1) = spanf u1g; u1 = (1 ; 1; 1; 1);

V (2) = spanf u2g; u2 = (1 ; � 1; � 1; 1);

V (3) = spanf u3g; u3 = ( � 1; 1; � 1; 1);

V (4) = spanf u4g; u4 = ( � 1; � 1; 1; 1):(39)

In Table 13, the irreducible representationsX ( i ) of G0;1 are realized in irreducible
G0;1-invariant submodules of the group algebraC[G0;1] which is decomposed as

[22]



Tab. 12: Representations of G1;0 = D 4

K 1 K 2 K 3 K 4

g 1 � 1 e1 � e1

X (1)
�
1
� �

1
� �

1
� �

1
�

X (2)
�
1
� �

� 1
� �

� 1
� �

1
�

X (3)
�
1
� �

� 1
� �

1
� �

� 1
�

X (4)
�
1
� �

1
� �

� 1
� �

� 1
�

follows:

C[G0;1] = V (1) � V (2) � V (3) � V (4) :(40)



are as follows:

V (1) = spanf u1g; u1 = (1 ; 1; 1; 1; 1; 1; 1; 1);

V (2) = spanf u2g; u2 = ( � 1; � 1; 1; 1; 1; 1; � 1; � 1);

V (3) = spanf u3g; u3 = ( � 1; � 1; � 1; � 1; 1; 1; 1; 1);

V (4) = spanf u4g; u4 = (1 ; 1; � 1; � 1; 1; 1; � 1; � 1);

V (5) = spanf u5; u6g; u5 = ( � 1; 1; � 1; 1; � 1; 1; 1; � 1);

u6 = ( � 5; 5; � 5; 5; � 1; 1; 1; � 1);

V (6) = spanf u7; u8g; u7 = (1 ; � 1; � 1; 1; 0; 0; 0; 0);

u8 = (1 ; � 1; � 1; 1; � 1; 1; � 1; 1):(43)

While the one-dimensional representationsX (1) ; X (2) ; X (3) ; X (4) are inequivalent,
the two-dimensional representationsX (5) and X (6) are equivalent.

Tab. 14: Representations of G2;0 = D 4 = N1

K 1 K 2 K 3 K 4 K 5

g 1 � 1 e1 e2 e12

X (1)
�
1
� �

1
� �

1
� �

1
� �

1
�

X (2)
�
1
� �

1
� �

� 1
� �

� 1
� �

1
�

X (3)
�
1
� �

1
� �

1
� �

� 1
� �

� 1
�

X (4)
�
1
� �

1
� �

� 1
� �

1
�



are as follows:

V (1) = spanf u1g; u1 = (1 ; 1; 1; 1; 1; 1; 1; 1);

V (2) = spanf u2g; u2 = ( � 1; � 1; 1; 1; � 1; � 1; 1; 1);

V (3) = spanf u3g; u3 = ( � 1; � 1; � 1; � 1; 1; 1; 1; 1);

V (4) = spanf u4g; u4 = (1 ; 1; � 1; � 1; � 1; � 1; 1; 1);

V (5) = spanf u5; u6g; u5 = (0 ; 0; 0; 0; � i; i; 1; � 1);

u6 = ( � i; i; � 1; 1; � i; i; 1; � 1);

V (6) = spanf u7; u8g; u7 = (1 ; � 1; i; � i; 0; 0; 0; 0);

u8 = (0 ; 0; 0; 0; 1; � 1; � i; i ):(45)

While the one-dimensional representationsX (1) ; X (2) ; X (3) ; X (4) are inequivalent,
the two-dimensional representationsX (5) and X (6) are equivalent.

Tab. 15: Representations of G0;2 = Q8 = N2

K 1 K 2 K 3 K 4 K 5

g 1 � 1 e1 e2 e12

X (1)
�
1
� �

1
� �

1
� �

1
� �

1
�

X (2)
�
1
� �

1
� �

� 1
� �

1
� �

� 1
�

X (3)
�
1
� �

1
� �

1
� �

� 1
� �

� 1
�

X (4)
�
1
� �

1
� �

� 1
� �

� 1
� �

1
�

X (5)

 
1 0

0 1

!  
� 1 0

0 � 1

!  
� i � 2i

0 i

!  
1 2

� 1 � 1

!  
i 0

� i � i

!

X (6)

 
1 0

0 1

!  
� 1 0

0 � 1

!  
� i 0

0 i

!  
0 � 1

1 0

!  
0 i

i 0

!

In Table 16, the irreducible representationsX ( i ) of G3;0 = S1 are realized in irre-
ducible G3;0-invariant submodules of the group algebraC[G3;0] which is decomposed
as follows:

C[G3;0] =
12M

i =1

V ( i ) :(46)

The submodulesV ( i ) are spanned by the corresponding vectorsu i , i = 1 ; : : : ; 16; as
shown below. The coordinates of these vectors in the standard basis

B = f 1; � 1; e1; � e1; e2; � e2; e3; � e3; e12; � e12; e13; � e13; e23; � e23; e123; � e123g

[25]







Tab. 16: Part 2: Representations of G3;0 = S1 for K i ; i = 6 ; : : : ; 10
K 6 K 7 K 8 K 9 K 10

g e2 e3 e12 e13 e23

X (1)
�
1
� �

1
� �

1
� �

1
� �

1
�

X (2)
�
1
� �

� 1
� �

1
� �

� 1
� �

� 1
�

X (3)
�
� 1

� �
1
� �

� 1
� �

1
� �

� 1
�

X (4)
�
� 1

� �
� 1

� �
� 1

� �
� 1

� �
1
�

X (5)
�
1
� �

1
� �

� 1
� �

� 1
� �

1
�

X (6)
�
1
� �

� 1
� �

� 1
� �

1
� �

� 1
�

X (7)
�
� 1

� �
1
� �

1
� �

� 1
� �

� 1
�

X (8)
�
� 1

� �
� 1

� �
1
� �

1
� �

1
�

X (9)

 
0 � i

i 0

!  
1 0

0 � 1

!  
i 0

0 � i

!  
0 � 1

1 0

!  
0 i

i 0

!

X (10)

 
0 � 1

� 1 0

!  
0 � i

i 0

!  
0 � 1

1 0

!  
0 � i

� i 0

!  
� i 0

0 i

!

X (11)

 
0 � 1

� 1 0

!  
0 i

� i 0

!  
0 1

� 1 0

!  
0 � i

� i 0

!  
i 0

0 � i

!

X (12)

 
0 � i

i 0

!  
1 0

0 � 1

!  
i 0

0 � i

!  
0 � 1

1 0

!  
0 i

i 0

!

While the representations X ( i ) ; i = 1 ; : : : ; 10; are all inequivalent and irreducible,
the remaining two-dimensional irreducible representations are equivalent as follows:
X (11) �= X (9) and X (12) �= X (10) .

In Table 18, the irreducible representationsX ( i ) of G0;3 = 
 2 are realized in irre-
ducible G0;3-invariant submodules of the group algebraC[G0;3] which is decomposed
as follows:

C[G0;3] =
12M

i =1

V ( i ) :(50)

The submodulesV ( i ) are spanned by the corresponding vectorsu i , i = 1 ; : : : ; 16; as
shown below. The coordinates of these vectors in the standard basis

B = f 1 1] =
0] =



Tab. 17: Part 1: Representations of G2;1 = 
 1 for K i ; i = 1 ; : : : ; 5
K 1 K 2 K 3 K 4 K 5

g 1 � 1 e123 � e123 e1

X (1)
�
1
� �

1
� �

1
� �

1
� �

1
�

X (2)
�
1
� �

1
� �

� 1
� �

� 1
� �

1
�

X (3)
�
1
� �

1
� �

� 1
� �

� 1
� �

1
�

X (4)
�
1
� �

1
� �

1
� �

1
� �

1
�

X (5)
�
1
� �

1
� �

� 1
� �

� 1
� �

� 1
�

X (6)
�
1
� �

1
� �

1
� �

1
� �

� 1
�

X (7)
�
1
� �

1
� �

1
� �

1
� �

� 1
�

X (8)
�
1
� �

1
� �

� 1
� �

� 1
� �

� 1
�

X (9)

 
1 0

0 1

!  
� 1 0

0 � 1

!  
� 1 0

0 � 1

!  
1 0

0 1

!  
1 0

0 � 1

!

X (10)

 
1 0

0 1

!  
� 1 0

0 � 1

!  
1 0

0 1

!  
� 1 0

0 � 1

!  
� 1 0

0 1

!

X (11)

 
1 0

0 1

!  
� 1 0

0 � 1

!  
� 1 0

0 � 1

!  
1 0

0 1

!  
1 0

0 � 1

!

X (12)

 
1 0

0 1

!  
� 1 0

0 � 1

!  
1 0

0 1

!  
� 1 0

0 � 1

!  
1 0

0 � 1

!

are as follows:

V (1) = spanf u1g; u1 = (1 ; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1);

V (2) = spanf u2g; u2 = ( � 1; � 1; � 1; � 1; � 1; � 1; 1; 1; � 1; � 1; 1; 1; 1; 1; 1; 1);

V (3) = spanf u3g; u3 = ( � 1; � 1; � 1; � 1; 1; 1; � 1; � 1; 1; 1; � 1; � 1; 1; 1; 1; 1);

V (4) = spanf u4g; u4 = (1 ; 1; 1; 1; � 1; � 1; � 1; � 1; � 1; � 1; � 1; � 1; 1; 1; 1; 1);

V (5) = spanf u5g; u5 = ( � 1; � 1; 1; 1; � 1; � 1; � 1; � 1; 1; 1; 1; 1; � 1; � 1; 1; 1);

V (6) = spanf u6g; u6 = (1 ; 1; � 1; � 1; 1; 1; � 1; � 1; � 1; � 1; 1; 1; � 1; � 1; 1; 1);

V (7) = spanf u7g; u7 = (1 ; 1; � 1; � 1; � 1; � 1; 1; 1; 1; 1; � 1; � 1; � 1; � 1; 1; 1);

V (8) = spanf u8g; u8 = ( � 1; � 1; 1; 1; 1; 1; 1; 1; � 1; � 1; � 1; � 1; � 1; � 1; 1; 1);

V (9) = spanf u9; u10g; u9 = (1 ; � 1; � i; i; 0; 0; 0; 0; 0; 0; 0; 0; � i; i; � 1; 1);

u10 = (0 ; 0; 0; 0; 1; � 1; i; � i; i; � i; � 1; 1; 0; 0; 0; 0);

V (10) = spanf u11; u12g; u11 = (0 ; 0; 0; 0; i; � i; 1; � 1; � 1; 1; i; � i; 0; 0; 0; 0);

u12 = ( � 1; 1; i; � i; 0; 0; 0; 0; 0; 0; 0; 0; � i; i; � 1; 1);

V (11) = spanf u13; u14g; u13 = (0 ; 0; 0; 0; 1; � 1; � i; i; � i; i; � 1; 1; 0; 0; 0; 0);

u14 = (1 ; � 1; i; � i; 0; 0; 0; 0; 0; 0; 0; 0; i; � i; � 1; 1);

V (12) = spanf u15; u16g; u15 = (0 ; 0; 0; 0; � 1; 1; � i; i; i; � i; � 1; 1; 0; 0; 0; 0);

u16 = ( � 1; 1; � i; i; 0; 0; 0; 0; 0; 0; 0; 0; i; � i; � 1; 1):(51) [29]





Tab. 18: Part 1: Representations of G0;3 = 
 2 for K i ; i = 1 ; : : : ; 5
K 1 K 2 K 3 K 4 K 5



Tab. 18: Part 2: Representations of G0;3 = 
 2 for K i ; i = 6 ; : : : ; 10
K 6 K 7 K 8 K 9 K 10

g e2 e3 e12 e13 e23

X (1)
�
1
� �

1
� �

1
� �

1
� �

1
�

X (2)
�
1
� �

� 1
� �

1
� �

� 1
� �

� 1
�

X (3)
�
� 1

� �
1
� �

� 1
� �

1
� �

� 1
�

X (4)
�
� 1

� �
� 1

� �
� 1

� �
� 1

� �
1
�

X (5)
�
1
� �

1
� �

� 1
� �

� 1
� �

1
�

X (6)
�
1
�


