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Proposition 1. Let V be aG-module, W



the conjugacy classes of the dihedral grou,,. [12]

Example 2. Consider the dihedral groupD,, = h;p : " = p? = (rp)? = & of
order 2n. When n is odd, D,, has 1



Proposition 3. Let G havek conjugacy classes with representativeg;; gz;:::; Ok-

Also, let and be some characters ofs. Then, h; i=h; i, and
1 X X (g) (@)
(7) hy i=—= (9 (9= 5"
16l 6 ., 1Cc(9)i

Theorem 4. Let and be irreducible characters of a grougs. The characters are
orthonormal with respect to the inner product, i.e.,h; i =

As a consequence of the above theorem, several results can $tated in relation
to representations, irreducibility, etc. The following th eorem will be used extensively



Example 3. Let G = S,: Of course it is well known that the number of conju-
gacy classes for anyS, equals the number of partitions ofn: Furthermore, each

class consists of permutations having the same cycle struct because the action of
conjugation preserves the cycle structure.

Example 4. Let G = Dy,: The number of conjugacy classes for the dihedral group
was discussed in Example 2. For exampld)g and Dg



2.1. General de nitions and properties

The vee groups were introduced by Salingaros in [18{20]. Thewere more recently
studied in [2{4, 22] where they were denoted a$,4. In particular, these groups are
central extensions of extra-special 2-groups. [6,9{11,122]

De nition 3.  Let C'ppq be the real Cliord algebra of a non-degenerate quadratic
form with signature (p;g) and letB = fe j O j ij ng be a basis forC',q
consisting of basis monomialse = e.,6, &,,i1<i2< <ig;for 0 k n
wheren = p+qQ:



where = e e,; n= p+ q;is the unit pseudoscalar inC",q. This leads to the
following conclusion (see also [22]).

Theorem 8. Let Gpq C'pyg. Then,

8

3f 1g= 2, ifp g 02,46 (mod8);
(13) Z(Gpq) = Bf 1, 9g=2Z, Z, ifp q 1,5 (mod8);

- f 1, g=24 ifp q 3,7 (mod8):

The following result implies that the vee groups of order 2 are abelian. For the
proof of this proposition, see [16].

Proposition 5. If pis a prime, then every groupG of order p? is abelian.

It is worth to know the order relation of the normal subgroups of the Salingaros'
vee groups.

Proposition 6. If a group G is of order jGj = p", then G has a normal subgroup
of order p™ for everym n.

So, this result tells that Gp.q of order 2*9*1 has a normal subgroup of order 2 for

anym p+ g+ 1, which implies that Gp,q are not simple groups.

2.2. Conjugacy classes

In this section we discuss the conjugacy classes @4 using Theorem 8. It is con-



Theorem 9. Let N be the number of conjugacy classes iGpq: Then,

(16) N = L+ ifp+qiseven
2+2P*9 if p+ qis odd:

Proof.



The following theorem gives the number of inequivalent repesentations of degree
one of the groupGpyq.

Theorem 10. Let M be the number of inequivalent representations of degree one
of Gp,q. Then,

(
2 2P*9=4 if p+q=1,;

(17) M = :
2r+a if p+q 2

Proof. From Theorem 2, the number of degree one representations dby.q is the
index of its commutator subgroup [Gpq : Gg;q]. When p+ g = 1, the commutator
subgroup Gp,, = flgand soM = [Gpq : GJ,] = (2 21)=1=4. For p+q 2,
Gpq=f1 10,S0M =[Gpq:G,]=(2 2P*9)=2=2P"9, as desired.m

Note that Maschke's Theorem 1 gives the decompositiolC[Gpq] = N m; V() and

m
from Proposition 4, one getsjC[Gpq]j = m; 2. From the above theorem, provided
i=

that M is the number of degree one representations of the group, théimension of
the group algebraC[Gy,q] can be rewritten as
(18) iCIGpali = M + mi:

i=M +1
Thus, the dierence N M is the number of inequivalent irreducible representations
of Gp.q with degree two or more. This can be formally stated as the fdbwing result.

Theorem 11. Let L be the number of inequivalent irreducible representationsvith
degree two or more ofGpq. (i) Let p+ q 2. If p+ gis even, thenL =1 otherwise
L =2. (i) When p+ q=1,thenL =0:

Proof. The proof follows immediately from Theorems 9 and 10.=

In the remainder of this section, we give the order structureand conjugacy classes
of Salingaros' vee groups of orders 4, 8, and 16.
Example 6. Consider the abelian groupsGi.o and Gg.1: The number of conjugacy
classes isN =2+2 ! =4 as predicted by Theorem 9, and the conjugacy classes are:
(29) Ki=flg, Ko=f 1g; Kz=feg Ks=f eqg

Since the groupsGi.o and Go.1 have the same conjugacy classes, what distinguishes
them is their order structure. The order structure of these goups is summarized
in Table 2 where C.0.S. and G.O.S. give the center order struare and the group
order structure, respectively, of each group. Also?Mat(1;R) denotesMat(1; R)
Mat(1;R).

[10]



Tab. 2: Vee groups Gpq of order 4 forp+ gq=1

(p,q) Group C'pg Center 21 C0OS.[GOS. | L

o

(1,0) | G1,0= D4 | °Mat(1;R) | Zp Zp | +1 | (1,3,0) | (1;3;0)

(0;1) | Goa = Z4 | Mat(1;C) Z4 113152 (1;12) | 0

Example 7.



Tab. 4: Vee groups Gpyq



One needs to nd four vectors u;; up; usz; and ug which span 1-dimensional
Gy.o-invariant subspacesV® ; V@ :v®; and V® such that

(22)

C[G1.0] = v y@ @ y@

and V() = spanfu;g;i = 1;:::;4: Notice that all V() are of dimension 1 since
the group is abelian and all irreducible modules are one dim@sional. The following
algorithm can be used to nd the basis vectors.

Algorithm 1.

1:

2:

LetG=S= G]_;() and V = C[S] = C[Gl;o]:

Let u; be the sum of all basis elements i and de ne V) = spanfu;g. Such
subspace always carries the trivial representation and its G-invariant since
gu; = u; for every g2 G.

Compute a basis for the orthogonal complement 6f @ in V and rename this
complement asV . This orthogonal complement is obviously3-dimensional and
it is G-invariant by Proposition 1.

Using Groebner basis technique [8], nd al-dimensional G-invariant subspace
V®@ in V and nd its spanning vector us:

Find a 2-dimensional orthogonal complement ofv? in V. Call this comple-
ment V. By the same reasoning, it isG-invariant.

Find a 1-dimensional G-invariant subspaceV® in V dierent from V@ and
its spanning vector us:

Find a basis for the orthogonal complemeny ® of V®  v@ VO in C[Gy.(]
and its spanning vectorug,:

: The algorithm terminates since the dimension ofC[G1.o] iS nite.

From the above procedure, one obtains all basis vectors; as linear combinations of
the standard basisB = f1; 1;e;; eigof C[G1.c] as follows:

VO =spanfuig;  ur=@)1+@Q)( 1)+@)(e)+ @A) e);
V@ = spanfus.g; Us



from the following character table.

char/class | K1 Ky Kz Ky

@ 1 1 1 1

(24) @
(3)

4)

1 1
1 1
1 1

Rl
R e

The explicit matrix representations are shown in Table 12 in Appendix B. Note
that in the character table, rows and columns are orthonormd. Let () denote
the character of the representationX (: So, for example, the inner product of the
characters @ and ©) from the above table is computed as follows:

y. @ X o1
h @, ®j= 1 IKij k7 ki = Z((l)(1)+( nC D+ HO+@O(C 1)=0
i=1

sincejKij = 1 for each class. This veri es the character orthogonality relation of the



from the character table.

(27)

char/class | K1 Ky Kz Ky
@ 1 1 1 1
@ 1 1 i i
® 1 1 1 1
“) 1 1 i i



2: Apply Algorithm 1 to nd vectors uj;u;;us;uy providing bases for the one-
dimensional G-invariant submodulesV® ; V@ ;v@;v® jn v,

3: Find a basis for the orthogonal complement o¥ @ v@ v@ v® jnv
and call it V. It is 4-dimensional.

4: Using Groebner basis technique, nd any2-dimensional G-invariant subspace
in V and call it V® . That is, nd its basis vectors us and ug:

5: Find a basis for the orthogonal complement o¥ ® in V and call it V® : That
is, nd its spanning vectors u; and ug:

vectors provide a basis for the decomposition of[G2.o]:

Once the decomposition ofC[G,.o] has been found, one can compute all irreducible
representations X ();i = 1;:::;6; of Gy, in the six invariant submodules V(): The
degree-one representationX () ; X @ : X @) : and X ®) are all inequivalent since their
characters are di erent as shown in the character table bela. The two irreducible
representations X ® and X ® of degree two are equivalent. All representations are
displayed in Table 14 in Appendix B. The extended character t



3.2.2. The extra-special groupGo:2 = Qs = N3

The group Go;» is generated by 1, e; and e; with €2 = € = 1, e



where V() =spanfu;g; i =1;:::;8; are one-dimensional while

VO =spanfugiuieg; VIO =spanfuis;uig;

(33) VI =spanfuis;uag; V@ = spanfuss; uieg

are two-dimensional subspaces carrying two pairwise equitent representations ac-
cording to Proposition 4, Theorem 10 and Theorem 11.

The basis vectorsu; are displayed in (47) in Appendix B. They have been found
by using the above two algorithms.

Once the decomposition ofC[G3.¢] has been determined, one can compute all ir-
reducible representationsX () of Gz.o. The representations are displayed in Table 16
in Appendix B. The extended character table for Gs.q is as follows:

char/class Ki Kz Kj Ks Ks Kg K7 Kg Kg Kip
@ 1 1 1 1 1 1 1 1 1 1
@ 1 1 1 1 1 1 1 1 1 1
@ 1 1 1 1 1 1 1 1 1 1
“ 1 1 1 1 1 1 1 1 1 1
®) 1 1 1 1 1 1 1 1 1 1
(34) ©) 1 1 1 1 1 1 1 1 1 1
™ 1 1 1 1 1 1 1 1 1 1
®) 1 1 1 1 1 1 1 1 1 1
©) 2 2 2 2 0 0O O O o0 O
(10) 2 2 2 2 0 O O O o0 O
an 2 2 2 2 0 0O O O o0 O
(12) 2 2 2 2 0 0O O O o0 O

Note that X ® = X 12 and X©® = X (®2 since their characters are the same. To
illustrate orthogonality of the characters, consider the inner product of the characters
(2 and (3):
1 %0

nes o 2 @

i=1

%3(1 O@O+1 @O+1 ( D H+1 ( (1)
+2 M+2 ) H+2 ( HAD)
+2 () D+2 ( H®M+2 ( 1)( 1)

(35) =0:

which veri es the character orthogonality relation of the rst kind. In a similar
manner one can verify the character relation of the second kid.

Since the groupG;.» belongs to the same clas$; as Gs.o; it will not be discussed
separately.

[18]



3.3.2. The groupGz.1 = 1

The group G».; is generated by 1, e, & and es with € = € =1and & = 1,
eg = ge6;i6j; whilethe groupS S;6 isomorphic to G, is generated by the
permutations of S;g as shown in Table 9 in Appendix A.

The decomposition ofC[G3.1] looks the same as that ofC[G3.(] displayed in (32),
while the basis vectorsu; for this decomposition are displayed in (49) in Appendix B.
They have been found by using the above two algorithms.

Once the decomposition ofC[G2.1] has been found, one can compute all irre-
ducible representations X () of G,.1. The representations are displayed in Table 17
in Appendix B. The extended character table for G,.; is as follows:

char/class Ki Ky K3z Kg Ks Kg K7 Kg Kg Kip
1) 1 1 1 1 1 1 1 1 1 1

@) 1 1 1 1 1 1 1 1 1 1
©)




The extended character table forGog.3 is as follows:

char/class Ki Ky K3z Kg Ks Kg K7 Kg Kg Kip
@ 1 i1 1 1 1 1 1 1 1 1
@ 1 i 1 1 1 1 1 1 1 1
@ 1 i1 1 1 1 1 1 1 1 1
“ 1 i1 1 1 1 1 1 1 1 1
®) 1 1 1 1 1 1 1 1 1 1
(37) ® 1 i1 1 1 1 1 1 1 1 1
™ 1 i1 1 1 1 1 1 1 1 1
®) 1 i 1 1 1 1 1 1 1 1
©) 2 2 2 2 0 0O 0 0O 0 o0
(10) 2 2 2 2 0 0 O 0 0 O
1 2 2 2 2 0 0 0 0O 0 oO
(12) 2 2 2 2 0 0 0O 0 0 O

Note that X @ = X (@1 gnd X 19 = X (12) since their characters are the same.

4. Conclusions

Due to the renewed interest in the relationship between nite Salingaros' vee groups
G = Gpq and Cli ord algebras, the main goal of this paper has been to ow how one

can construct irreducible representations of these groupby decomposing their regu-
lar modules. In the process, two algorithms have been formalted which have allowed

us to completely decompose regular modules of groups of onde4, 8, and 16 into

irredgicible



A. Images of the generators of the vee groups

In this Appendix, we show images of the generators of the veergups Gpq for
p+ g 3 inthe symmetric groups S, wheren =21*pP*a:

Tab. 5: Generators for Gi.0 and Gop.1 in Sy
G1.o Order Go1 | Order |
1] (1:2)3;4)

(1



Tab. 9: Generators for G2:1 in S
Ga1 Order
1| (1;2)(3;4)(5;6)(7;8)(9; 10)(11;12)(13;14)(15; 16) 2
(1;3)(2; 4)(5; 9)(6;10)(7, 11)(8; 12)(13, 15)(14; 16)
(1,5)(2;6)(3;10)(4,9)(7; 13)(8; 14)(11, 16)(12,15)
(1;7;2;8)(3;12,4,11)(5; 14; 6; 13)(9; 15; 10; 16)

&P @
INFNIENY

Tab. 10: Generators for Gi.2 in Sie
Gi:2 Order
1| (1;2)(3;4)(5;6)(7;8)(9;10)(11; 12)(13;14)(15; 16) 2
(1; 3)(2; 4)(5; 9)(6; 10)(7; 11)(8; 12)(13; 15)(14; 16)
(1;5;2;6)(3;10; 4,9)(7;13; 8; 14)(11; 16; 12; 15)
(1;7;2;8)(3;12,4,11)(5; 14; 6; 13)(9; 15; 10; 16)

&P |2
INFNIN

Tab. 11: Generators for Go.3 in Sie
Go:3 Order
1| (1;2)(3;4)(5;6)(7;8)(9;10)(11; 12)(13;14)(15; 16) 2
e (1;3;2;4)(5;9;6; 10)(7; 11; 8; 12)(13; 15; 14; 16)
e (1;5;2;6)(3;10; 4,9)(7;13; 8; 14)(11; 16; 12; 15)
€3 (1;7;2;8)(3;12,4,11)(5; 14; 6; 13)(9; 15; 10; 16)

IR

For the groups of order 4, all representations are inequivant, and are shown in
Tables 12 and 13.

In Table 12, the irreducible representationsX () of Gi.0 are realized in irreducible
Gi.o-invariant submodules of the group algebraC[G1.o] which is decomposed as
follows:

(38) C[G1ol= VW v@ vO&  yv@&:.

The one-dimensional submoduled/ () are spanned by the corresponding vectorsi;,
i =1;:::;4: The coordinates of these vectors in the basi® = f1; 1;e; eqg are
as follows (:

vV® =spanfuig;  ui=(1;1;1;1);
V@ =spanfu,g; up,=(1; 1, 1;1);
V® =spanfusg; us=( 1;1; 1;1);
(39) V® =spanfusg; us=( 1; 1;1;1):
In Table 13, the irreducible representationsX () of Go:1 are realized inirreducible
Go:1-invariant submodules of the group algebraC[Gp.1] which is decomposed as
[22]



Tab. 12: Representations of Gi.o = D4

K 1 K 2 K 3 K 4

g 1 1 e e
X @ 1 1 1 1
X @ 1 1 1 1

X @) 1 1 1 1

X @) 1 1 1 1

follows:

(40) ClGp4]= VW v@ vO&  yv@&:



are as follows:

v = spanfu,g; up=(1;1,11,11;1;1);

V® = spanfusg; u=( L LLLLL 1 1)
V& = spanfusg; us=( L 1 1, L1111
V@ = spanfu,g; us=(1;1 1 LLL L 1)

v® = spanfus; usg; us=( 1;1; 1;1, 11,1, 1)
us=( 55 55 11,1, 1)
Vv® = spanfu;usg; uz=(1; 1; 1;1,0;0;0;0);
(43) ug=(1; 1, 1,1, L1, 1;1):

While the one-dimensional representationsX @ ;X @) ;X @) : X *) are inequivalent,
the two-dimensional representationsX ® and X ®) are equivalent.

Tab. 14: Representations of Gz.0 = D4 = N3

K1 K, Ks Kg Ks
g 1 1 e € e
X @ 1 1 1 1 1
X@ 1 1 1 1 1
X ® 1 1 1 1 1
X @ 1 1 1 1




are as follows:

V® = spanfug; ur=(1;1411211;1);
V@ = spanfuyg; uz=( L LLL 1 1,11
V® = spanfusg; us=( L L 1L LLLL1)
V® = spanfuyg; us=(1;3 1L 1 1 1,11
v® = spanfus; usg; us=(0;0;0;0; i;i; 1, 1);
ue=( ii; L1 il 1)
V® =spanfu;;usg;, uz=(1; 1i; i 0;0;0;0);
(45) ug =(0;0,0,0;1; 1; ii):

While the one-dimensional representationsX @ ;X @) ;X @)X *) are inequivalent,
the two-dimensional representationsX ® and X ®) are equivalent.

Tab. 15: Representations of Gp.2 = Qg = N3

K]_ K2 K3 K4 K5
g 1 1 er & e
X @ 1 1 1 1 1
X@ 1 1 1 1 1
X ® 1 1 1 1 1
X® 1, 1 1, 1, 1,
© © 10 1 0 i 2 1 2 i 0

0 1 0 1 0 i 11 i
% © 10 1 0 [ 0 0 1 0 i

01 0 1 0 i 1 0 i 0

In Table 16, the irreducible representationsX () of Gs.o = S; are realized in irre-
ducible Gs.p-invariant submodules of the group algebraC[G3.o] which is decomposed
as follows:

M2

(46) ClGsal=  V:
i=1

shown below. The coordinates of these vectors in the standdrbasis

B=11 1,e; ei;e; €€ €3;€2; €12;€13;, €13;€3; €23;€123; €1230
[25]









Ke Kz Kg Kg Ko
g € €3 €12 €13 €3
X @ 1 1 1 1 1
X @ 1 1 1 1 1
X G 1 1 1 1 1
X @ 1 1 1 1 1
X ® 1 1 1 1 1
X © 1 1 1 1 1
X 1 1 1 1 1
X ® 1, 1, 1, 1, 1,
NG 0 i 1 0 [ 0 0 1 0 i
[ 0, 0 1 0 i, 1 0, i 0,
X (10) 0 1 0 i 0 1 0 [ i 0
1 0 [ 0 1 0 [ 0, 0 i
X a1 0 1 0 i 01 0 i [ 0
1 0 i 0 10 [ Q 0 |
X 12) 0 i 1 0 [ 0 0 1 0 i
[ 0 0 1 0 i 1 o0 i 0
While the representations X (); i = 1;:::;10; are all inequivalent and irreducible,

the remaining two-dimensional irreducible representatims are equivalent as follows:
X 1) = x O gnd X 12 = x10)

In Table 18, the irreducible representationsX () of Go.3 = , are realized in irre-
ducible Gg.3-invariant submodules of the group algebraC[Go.3] which is decomposed
as follows:

(50)

shown below. The coordinates of these vectors in the standdrbasis



Tab. 17: Part 1: Representations of Gz.1 =

K1 K Ks Ka Ks
g 1 1 €123 €123 e
X @ 1 1 1 1 1
X @ 1 1 1 1 1
X @ 1 1 1 1 1
X® 1 1 1 1 1
X ® 1 1 1 1 1
X © 1 1 1 1 1
X 1 1 1 1 1
X ® 1, 1 1, 1, 1,
10 1 0 1 0 10 1 0
X ©)
0 1 0 1 0o 1 01 0 1
wao | 10O 1 0 10 1 10
0 1 0 1 0 1 0 0 1
wan | 10 1 0 1 0 10 1 0
0 1 0 1 0o 1 01 0o 1
wazn | 10O 1 0 10 1 1 0
01 0o 1 01 0 0o 1
are as follows:
v® = spanfug; ur=(1;L5 4455555511111 1);
V® = spanfusg; u=( L L L L L LLY L LLLLLL)
V& = spanfusg; us=( L L L LLL L LLY L LLLLL);
V@ = spanfu,g; us=(1;L5L L L L L L L L LLLL)
V® = spanfusg; us=( L LLL L L L LLLLL L L11)
V©® = spanfuseg; us=(1;1 1 LLL L L L LLL L L11)
V® = spanfusg; ur=(1;% L L L LLLLL L L L L11)
V® = spanfusg; ug=( L LLLLLLL L L L L L L11)
V® =spanfus;uiog; Us=(1; 1 ii; 0;0;0,0;0;0;0;0; iri; 1;1);
uip =(0;0,0;0;1; Lii; iy i; 1;1,0;0;0;0);
V@) =spanfuyi;ug; Ui =(0;0,0,0;i; ;1 1 L Li; i;0,0,0;0);
uz =( L,%i; i;0,0,0,0,0;0;0;0; i;i; 1;1);
V@ =spanfuisiug uiz=(0;0,0,0;L 1, ii; §i; 1,1,0,0;0;0);
uia=(1; 1;i; i;0,0,0,0,0;0;0;0;i; i; 1;1);
V@) =spanfugs;ueg; U1s=(0;0,0,0; L1 i;izi; i, 1;1,0,0;0;0);
(51) uie=( L1 (2%} 0,0,0.0;0;0;0;0:; i 11):






Tab. 18: Part 1: Representations of Go.3 =

2 for Ki;

.....

Kl K2 KS

Ks




Tab. 18: Part 2:

Representations of Go;3 =

Ks K- Kg Ko Ko
g & €3 €12 €13 €23
X D 1 1 1 1 1
X @ 1 1 1 1 1
X ©) 1 1 1 1 1
X @ 1 1 1 1 1
X ©) 1 1 1 1 1
X ©) 1




