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Abstract. In this letter, the Lounesto spinor �eld classi�cation is ex tended to the
spacetime quantum Cli�ord algebra and the associated quantum algebraic spinor
�elds are constructed. In order to accomplish this extension, the spin-Cli�ord bundle
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1. Introduction

The formalism of Cli�ord algebras allows wide applications, in particular, the prominent
construction of spinors and Dirac operators, and index theorems. Usually such algebras
are essentially associated to an underlying quadratic vector space. Notwithstanding,
there is nothing that complies to a symmetric bilinear form endowing the vector space [2].
For instance, symplectic Cli�ord algebras are objects of huge interest. More generally,
when one endows the underlying vector space with an arbitrary bilinear form, it evinces
prominent features, especially regarding their representation theory. The most drastic
character distinguishing the so called quantum and the orthogonal Cli�ord algebras
ones is that a di�erent Zn -grading arises, despite of theZ2-grading being the same,
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whereb0123 = p. Now, the vector space isomorphisms

C`+
1;3 ' C`3;0 ' C`1;3

1
2(1 + e0) ' C4 ' H2

give the equivalence among the classical, the operatorial,and the algebraic de�nitions
of a spinor. In this sense, the spinor spaceH2 which carries theD (1=2;0) � D (0;1=2) or
D (1=2;0), or D (0;1=2) representations of SL(2; C) is isomorphic to the minimal left ideal
C`1;3

1
2(1 + e0) { corresponding to the algebraic spinor { and also isomorphic to the even

subalgebraC`+
1;3 { corresponding to the operatorial spinor. It is hence possible to write

a Dirac spinor �eld as
 

q1 � q2

q2 q1

!

[f ] =

 
q1 � q2

q2 q1

!  
1 0
0 0

!

=

 
q1 0
q2 0

!

'

 
b+ b
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[(uvw) ]B = uvw + uv(w y
A

 ) � uw(u y
g

 ) + w ^ (u y
g

(v y
A

 )) + u(v y
A

(w y
B

 ))

� v ^ (u y
A

w) + v ^ w ^ (u y
A

 ) � v ^ (u y
g� A

(w y
g

 )) + u y
A

((v y
g

w) )

� v ^ (u y
A

(w y
B

 )) � (w y
A

u)v � (v y
A

w)u : (19)

In (15) we used the minimal ideal provided by the idempotent

f = 1
4(1 +  0)(1 + i 1 2) = 1

4(1 +  0 + i 1 2 + i 0 1 2):

Now, in C`(V; B) the formalism is recovered when we consider the idempotent

f B = 1
4(1 +  0 + i 1

B
 2 + i 0

B
 1

B
 2) (20)

where we let 1
B

 2 = (  1 2)B ,  0
B

 1
B

 2 = (  0 1 2)B ; etc. in C`(V; B). The formalism

for C`(V; B) is mutatis mutandis obtained, just by changing the standard Cli�ord
product  �  � to

 �
B

 � =  �  � + A �� (21)

The last expression is the prominent essence of transliterating C`(V; B) to C`(V; g). For
instance, (15) evinces the necessity of de�ning

f = 1
4(1 +  0)(1 + i 1 2) 2 C`(V; g): (22)

Now, in C 
 C`B
1;3 we have

f B = 1
4(1 +  0)

B
(1 + i 1

B
 2)

= 1
4(1 +  0)(1 + i 1 2) + i

4(A12 + A12 0 � A02 1 + A01 2): (23)

Herein we shall denote

f B = f + f (A) (24)

wheref (A) = i
4(A12 + A12 0 � A02 1 + A01 2).

In the Dirac representation (A.3), the idempotentf in (22) reads

f =

0

B
B
B
@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

C
C
C
A

and as

 0
B

 1
B

 2 =  0 1 2 + A01 2 � A02 1 + A12 0; (25)

one can substitute it in (24) to obtain

f B =

0

B
B
B
@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

C
C
C
A

+
1
4

0

B
B
B
@

2iA 12 0 0 � iA 02 � A01

0 2iA 12 � iA 02 + A01 0
0 iA 02 + A01 0 0

iA 02 � A01 0 0 0

1

C
C
C
A

: (26)
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When A �� = 0 it implies that B = g and the standard spinor formalism is recovered.
Let us denote byC`B

1;3 the Cli�ord algebra C`(V; B), where V = R4 and B = � + A,
where� denotes the Minkowski metric.

An arbitrary element of C`B
1;3 is written as

 B = c + c�  � + c�� ( �  � )B + c��� ( �  �  � )B + p( 0 1 2 3)B : (27)

By using (21, 25), (27) reads

 B =  + c�� A �� + c��� (A ��  � + A ��  � + A ��  � ) + p� ���� A �� ( �� + A �� ) (28)

where is an element in the standard Cli�ord algebraC`1;3 of the form given by (6).
Herein we shall rewrite (28) as

 B =  +  
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2B ) � B 6= 0; ! B = 0.

3B ) � B = 0; ! B 6= 0.

4B ) � B = 0 = ! B ; K B 6= 0; SB 6= 0.

5B ) � B = 0 = ! B ; K B = 0; SB 6= 0.

6B ) � B = 0 = ! B ; K B 6= 0; SB = 0.

It is always possible to write:

� B = � + � (A); (32)

JB = J + J(A); (33)

SB = S + S(A); (34)

K B = K + K (A); (35)

! B = ! + ! (A): (36)

In general, since we assumeA 6= 0 (otherwise there is nothing new to prove, as
when A = 0 it implies that C`(V; B) = C`(V; g)), it follows that all the A-dependent
quantities � (A), J
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Table 1. Correspondence among the spinor �eld and the (quantum)B-spinor �elds
under Lounesto spinor �eld classi�cation.

Quantum Spinor Fields Spinor Fields

type-(1B ) B -Dirac Dirac type-(1)
Dirac type-(2)
Dirac type-(3)
Flag-dipoles type-(4)
Flagpoles (also Elko, Majorana) type-(5)
Weyl type-(6)

type-(2B ) B -Dirac Dirac type-(3)
Dirac type-(1)

type-(3B ) B -Dirac Dirac type-(2)
Dirac type-(1)

type-(4B ) B -ag-dipole Dirac type-(1)

type-(5B ) B -agpole Dirac type-(1)

type-(6B ) B -Weyl Dirac type-(1)

condition ! B = ! + ! (A) 6= 0 must hold. It is tantamount to assert that
0 6= ! 6= ! (A).

ii ) � 6= 0 and ! 6= 0. This case corresponds to the type-(1) Dirac spinor �elds.
Here both the conditions 06= ! 6= ! (A) and 0 6= � 6= � (A) has to hold.

3B ) � B = 0; ! B 6= 0. Despite the condition! B 6= 0 is compatible to both the possibilities
! = 0 and ! 6= 0 (clearly the condition ! 6= 0 is compatible to ! B 6= 0 if
! 6= � ! (A)), the condition � B = 0 implies that � = � � (A), which does not
equal zero. To summarize:

i ) ! = 0 and � 6= 0. This case corresponds to the type-(2) Dirac spinor �elds.
The condition ! = 0 is compatible to ! B 6= 0, but as � 6= 0, the additional
condition � B = � + � (A) 6= 0 must be imposed. Equivalently, 06= � 6= � (A).

ii ) � 6= 0 and ! 6= 0. This case corresponds to the type-(1) Dirac spinor �elds.
Here both the conditions 06= ! 6= ! (A) and 0 6= � 6= � (A) must be imposed.

4B ) � B = 0 = ! B ; K B 6= 0; SB 6= 0.

5B ) � B = 0 = ! B ; K B = 0; SB 6= 0.

6B ) � B = 0 = ! B ; K B 6= 0; SB = 0.

All the quantum spinor �elds 4B ), 5B ), and 6B ) are de�ned by the condition � B = 0 =
! B . This implies that � = � � (A)(6= 0), and that ! = � ! (A)(6= 0). It means that all
the singular B
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type-(1B ) Dirac spinor �elds correspond to all spinor �elds in the orthogonal Cli�ord
algebra. A deep discussion about these results is going to beaccomplished in the next
Section.

7. Concluding remarks and outlook

The mathematical apparatus provided by the quantum Cli�ordalgebraic formalism is a
powerful tool, in particular to bring additional interpret ations about the underlying
standard spacetime structures. For instance, equations (32{36) illustrate that the
distribution of intrinsic angular momentum, formerly a legitimate bivector in the
standard Cli�ord algebra C`(V; g), is now the direct sum of a bivector and a scalar
when considered inC`(V; B) from the point of view ofC`(V; g), evincing the di�erent
Zn -grading induced by the antisymmetric part of the arbitrary bilinear form B.
Furthermore, now, the bilinear covariantK is a paravector { the sum of a vector and
a scalar { which is not a homogeneous Cli�ord element. Indeed, in C`(V; B) it is a
homogeneous 1-form, but inC`(V; g) it is a paravector.

Some questions and possible answers can still be posed in thecontext of the
quantum Cli�ord algebraic arena. The mathematical formali
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� e1
B

e3
B

f B = 1
4(( iA 23 � A13)1 + ( iA 23 � A13)e0 + A03e1 � iA 03e2 � (A01 � iA 02)e3

� e13 + ie23 � e013 + ie023);

e3
B

f B = 1
4(� (A03 + iA 03A12 + iA 01A23 � iA 13A02)1 + iA 23e1 � iA 13e2 +

(1 + iA 12)e3 � iA 23e01 + iA 13e02 � (1 + iA 12)e03 � iA 03e12 +

iA 02e13 � iA 01e23 � ie0123 + ie123);

e1
B

f B = 1
4(� (A01 � iA 02)1 + e1 � ie2 � e01 + ie02); (A.9)

where 1 denotes the unity ofC 
 C`B
1;3: Of course, when we setA ij = 0 for all the

coe�cients of the antisymmetric part A appearing in (A.9), we obtain back the explicit
basis for the idealS = ( C 
 C`1;3)f shown in (A.1). Due to the relations (A.6),
the gamma matrices (A.3) also represent the generatorse0; e1; e2; e3 in the faithful
and irreducible representation of the algebraC 
 C`B

1;3 in the ideal SB . This can be
checked directly by computing these matrices in the explicit symbolic basis (A.9) with
CLIFFORD[22].

Appendix B. Additional terms in the quantum spinor �elds

Recall from (31) that a B -spinor has the form

( B )
B

(f B ) = (  )
B

f +  (A)
B
f + (  )

B
f (A) + (  (A))

B
f (A): (B.1)

where the term ( )
B

f is the classical spinor �eld displayed in (15). The remaining terms

in the above expression represent correction terms and are provided by:

(a) The term � 4i ( (A))
B
f (A) is given by

p
�
b013 (A01 (A01A32 + A20A31 + A12A30) + A12A13 + A03A20)

+ b023 (A02 (A01A32 + A20A31 + A12A30 + A30) + A12A13 + A03A20)

+ b123 (A12 (A01A32 + A20A31 + A12A30) � A23A20 � A31A01)

+ b012 (A10A01 + A20A02 + A12A12)
�

+  0 [p(A13A01 � A23A20 + 2A12A12A13 + A23A20A12 + A23A01A12) + sA12]

+  1 [p(A12A13 � A12A23 � A03A01 + A01A20A32 + A01A20A13 + A02A12A03

+ A03A12A21 + A23A01A10) + sA01]

+  2 [p(A03A20 + A01A01A32 + A13A01A02 + A13A20A02) + sA02]

+  3 [p(A01A01 + A02A02 + A02A12A13 + A12A20A10 + A02A20A12 + A01A12A13)]

+  01

�
p

�
b013 (A13A20 + A21A30) + b023 (A03A12 + A13A20) � b123A23A12

��

+  02

�
p

�
b013A13A01 + b023A13A01 + b123A13A21

��

+  03

�
p

�
b013A01A12 + b023A02A12 + b123A12A21

��

+  12
4 Td
[(A)-8.77546]TJ
/R42 7.97011 Tf
8.88 -1.04d
[(1)-10A A01A12 + b A 13A01 + b (A13A20 + A13A
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+  23
�
p

�
b013A01A10 + b023A01A20 + b123A12A10

��

+
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+ b03 (A02A31 + A23A01 + A30) + b31 (A21A31 + A23)

+ p(A30A20 + A32A01 + A21A20A13 + A30A21A12 + A30A20

+ A32A01 + A21A12 (A02 + A30) + b023A23A21
�

+ b12 (A21A12 � 1) + b23 (A31 � A32A21)
�

+  1

�
b01 (A20A10 + A12 + 2) + b02 (A20A02 � 1) + b03 (A32 � A30A02)

+ b31 (A01A32 + A12A30 + A30)

+ b12 (A20A12 + A01 + A02) + b23 (A30 + A32A20)

+ p(A32A01A02 + A30A20A12)]

+  2
�
b01 (A10A01 � 1) + b02 (A20A01 + A12 + 2) + b03 (A30A01 + A13)
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+  3
�
A20A02 + A10A01 + A12A12 + b03A21 + b13(A20 + A01A21) + b23A01

�

+  01
�
b013

�
A03A12 + A31A20) + b123A23(A12 + A02

�
+ b012 (A10 + A20A21)

+ b013A32A01 + b0A20 + b1A21
�

+  02

�
b013A01A31 + b123A32A01 + b012 (A20 + A21A01)

+ b023 (A23A01 + A20A31 + A30A12) + b0A01 + b2A01

�

+  03

�
b012A20

�

+  12
�
b013A01A31 + b123 (A20A31 + A30A12 + A32A01)

+ b023 (A13A01 + A03A20) + b1A01 + b2A02
�

+  13
�
b013A12 + b123A01 + b013A02 + b3A02

�

+  23
�
b123 (A01(A02 + A21) + A20) + b023A12

�
(B.5)
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