DEPARTMENT OF MATHEMATICS TECHNICAL REPORT

SQUARE ROOTS OF -1 IN REAL CLIFFORD ALGEBRAS

E. HITZER, J. HELMSTETTER and R. ABLAMOWICZ

April 2012

No. 2012-3

TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

Square Roots of 1 in Real Cli ord Algebras

Eckhard Hitzer, Jacques Helmstetter and Rafal Ablamowic

Abstract. It is well known that Cli ord (geometric) algebra o ers a geo metric interpretation for square roots of 1 in the form of blades that square to minus 1. This extends to a geometric interpretatio n of quaternions as the side face bivectors of a unit cube. Systematic research has been done [32] on the biquaternion roots of 1, abandoning the restriction to blades. Biquaternions are isomorphic to the Cliord (geometric) algebra C`(3; 0) of R^3 . Further research on general algebrasC`(p; q) has explicitly derived the geometric roots of 1 for $p + q$ 4 [17]. The current research abandons this dimension limit and uses the Cli ord algebra to matrix algebra isomorphisms in order to algebraically ch aracterize the continuous manifolds of square roots of 1 found in the di erent types of Cli ord algebras, depending on the type of associated rin g (R, H, R², H^2 , or C). At the end of the paper explicit computer generated tables of representative square roots of 1 are given for all Cli ord algebras with $n = 5$; 7, and $s = 3 \pmod{4}$ with the associated ring C. This includes, e.g., $C'(0; 5)$ important in Cli ord analysis, and $C'(4; 1)$ which in applications is at the foundation of conformal geometric alge bra. All these roots of 1 are immediately useful in the construction of new types of geometric Cli ord Fourier transformations.

Mathematics Subject Classi cation (2010). Primary 15A66; Secondary 11E88, 42A38, 30G35.

Keywords. algebication will be available at /4961 as part of E. Hitzer, S. Sangwine (eds.), \Quaterorms and wavelets", Trends in Mathematics, Birkhauser,

1. Introduction

The young London Goldsmid professor of applied mathematics W. K. Cliord created hisgeometric algebrast in 1878 inspired by the works of Hamilton on quaternions and by Grassmann's exterior algebra. Grassmaninvented the antisymmetric outer product of vectors, that regards the oriented parallelogram area spanned by two vectors as a new type of number, commut called bivector. The bivector represents its own plane, because der products with vectors in the plane vanish. In three dimensions the outer poduct of three linearly independent vectors denes a so-called trivectorwith the magnitude of the volume of the parallelepiped spanned by the vectors is orientation (sign) depends on the handedness of the three vectors.

In the Cli ord algebra [13] of $R³$ the three bivector side faces of a unit cube $f \in \{e_1, e_2, e_3, e_4\}$ oriented along the three coordinate directions $f e_1; e_2; e_3g$ correspond to the three quaternion unitsi, j, and k. Like quaternions, these three bivectors square to minus one and generathe rotations in their respective planes.

Beyond that Cliord algebra allows to extend complex numbers to higher dimensions [4,14] and systematically generalize out nowledge of complex numbers, holomorphic functions and quaternions into the realm of Clifford analysis. It has found rich applications in symbolic computation, physics, robotics, computer graphics, etc. $[5, 6, 9, 11, 23]$. Since be tors and trivectors in the Cli ord algebras of Euclidean vector spaces squee to minus one, we can use them to create new geometric kernels for Fourier ansformations. This leads to a large variety of new Fourier transformations, which all deserve to be studied in their own right [6, 10, 15, 16, 19, 20, 22, 25{9, 31].

In our current research we will treat square roots of 1 in Cli ord algebras C'(p; q) of both Euclidean (positive de nite metric) and non-Eucli dean (inde nite metric) non-degenerate vector spaces, $R^n = R^{n;0}$ and $R^{p;q}$, respectively. We know from Einstein's special theory of relatvity that non-Euclidean vector spaces are of fundamental importance in rtare [12]. They are further, e.g., used in computer vision and robotics [9] ad for general algebraic solutions to contact problems [23]. Therefore the chapter is about characterizing square roots of 1 in all Cli ord algebras $C'(p; q)$, extending previous limited research on $C'(3; 0)$ in [32] and $C'(p; q)$; n = p+ q 4 in [17]. The manifolds of square roots of 1 in C`(p; q), $n = p + q = 2$, compare Table 1 of [17], are visualized in Fig. 1.

First, we introduce necessary background knowledge of Cliord algebras and matrix ring isomorphisms and explain in more detail how we will characterize and classify the square roots of 1 in Cliord algebras in Section 2. Next, we treat section by section (in Sections 3 to 7) the squee roots of 1 in Cli ord algebras which are isomorphic to matrix algebras with associated

¹ In his original publication [8] Cli ord rst used the term geometric algebras. Subsequently in mathematics the new term Cli ord algebras [24] has become the proper mathematical term. For emphasizing the geometric nature of the algebra, some researchers continue [6, 13, 14] to use the original term geometric algebra(s).

Cent(f) \overline{I} G(A) is contained in the neutral⁷ connected component of GA), and the dimension of its conjugacy class is

$$
dim(A) \quad dim(Cent(f)):\tag{2.1}
$$

Note that for invertible $g 2$ Cent(f) we have $g^{-1}fg = f$. Besides, let Z(A) be the center of A, and let [A; A] be the subspace

instance, ! (mentioned above) and ! are central square roots of 1 in M (2d; C) which constitute two conjugacy classes of dimension 0. Obously, Spec $() = 1$.

are related as follows: tr(f) = 2 dScal(f). If f is a square root of 1, it turns V into a vector space overC (if the complex number i operates likef on V). If $(e_1; e_2; \ldots; e_d)$ is a C-basis of V, then $(e_1; f(e_1); e_2; f(e_2); \ldots; e_d; f(e_d))$ is a R-basis ofV , and the 2d 2d matrix of f in this basis is

diag
$$
\begin{bmatrix} 0 & 1 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \end{bmatrix}
$$

Consequently all square roots of 1 in A are conjugate. The centralizer of a square rootf of 1 is the algebra of all C-linear endomorphismsg of V (since i operates likef on V). Therefore, the C-dimension of Cent(f) is d^2 and its R-dimension is $2d^2$. Finally, the dimension (2.1) of the conjugacy class of is dim(A) dim(Cent(f)) = 4 d^2 2d² = 2d² = dim(A)=2. The two connected components of G(A) are determined by the sign of the determinant. Because of the next lemma, the R-determinant-of every element of Cent() is 0. Therefore, the intersection Cent(f) G(A) is contained in the neutral connected component of GA) and, consequently, the conjugacy class of has two connected components like CA). Because of the next lemma, theR-
trace quare trace quare

A (with f; f 0 2 M (2d; R)) has a determinant in R^2 which is obviously (det(f); det(f $\binom{0}{1}$, and the four connected components of GA) are determined by the signs of the two components of de $\mathfrak{t}_2(\mathfrak{f};\mathfrak{f}^{-0}).$

The lowest dimensional example $d = 1$) is C`(2; 1) isomorphic to M (2; R^2). Here the pseudoscalar! = e_{123} has square! 2 = +1. The center of the algebra is f 1; ! g and includes the idempotents = $(1 \tcdot) = 2$,
 $2 = 1 + 1 = 0$. The basis of the algebra can thus be written $=$ $+$ = 0. The basis of the algebra can thus be written as f $_+$; e_1 $_+$; e_2 $_+$; e_{12} $_+$; e_1 ; e_2 ; e_{12} g, where the rst (and the last) four elements form a basis of the subalgebr $\hat{\mathbf{c}}$ (2; 0) isomorphic to M (2; R). In terms of matrices we have the identity matrix (1; 1) representing the scalar part, the idempotent matrices $(1, 0)$, $(0, 1)$, and the ! matrix $(1, 1)$, with 1 the unit matrix of $M(2; R)$.

The square roots of (1; 1) in A are pairs of two square roots of 1 in M (2d; R). Consequently they constitute a unique conjugacy class win four connected components of dimension $d^2 = \dim(A)=2$. This number can be obtained in two ways. First, since every element f(f δ) 2 A (with f; $f \circ 2 M$ (2d; R)) has twice the dimension of the components $2 M$ (2d; R) of Section 3, we get the component dimension $2d^2 = 4d^2$. Second, the centralizer Cent(f; f Ω) has twice the dimension of Cent() of M (2d; R), therefore dim(A) Cent(f; f θ = 8 d² 4d² = 4 d². In the above example for d = 1 the four components are characterized according to (3.5) bythe values of the coe cients of e_{12} and e_{12} as

$$
C_1: \t 1; \t 0 \t 1; \\ C_2: \t 1; \t 0 \t 1; \\ C_3: \t 1; \t 0 \t 1;
$$

whence Scalt(; f Ω) = Spec(f; f Ω) = 0 if (f; f Ω) is a square root of (1; 1), compare with (5.2).

The group Aut(A) has two¹⁷ connected components; the neutral component is Inn(A), and the other component contains the swap automorphism $(f; f⁰)$ 7! $(f⁰; f)$.

The simplest example isd = 1, A = H^2 , where we have the identity pair $(1; 1)$ representing the scalar part, the idempotents (10) , $(0; 1)$, and ! as the pair $(1; 1)$.

A = H^2 is isomorphic to C`(0; 3). The pseudoscalar! = e_{123} has the square! $2 = +1$. The center of the algebra is f 1;! g, and includes the idempotents $\frac{1}{2}$ (1 !), $2 = 1$, $+ 1 = 0$. The basis of the algebra can thus be written as f $_+$; e_1 $_+$; e_2 $_+$; e_{12} $_+$; e_1 $_+$; e_2 $_+$; e_2 $_+$; e_1 $_2$ $_3$ where the rst (and the last) four elements form a basis of the subalgebra $C(0; 2)$ isomorphic to H.

7. Square roots of 1 in M (2d;C)

The lowest dimensional example ford $= 1$ is the Pauli matrix algebra $A =$ M (2; C) isomorphic to the geometric algebraC`(3; 0) of the 3D Euclidean space and C'(1; 2). The C'(3; 0) vectors e_1 ; e_2 ; e_3 correspond one-to-one to the Pauli matrices

$$
1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} ; \qquad 2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} ; \qquad 3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} ; \qquad (7.1)
$$

with $1 \t2 = i \t3 = i \t0$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. The element $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ = 1 $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ = 11 represents the central pseudoscalare₁₂₃ of C`(3; 0) with square ! ² = 1. The Pauli algebra has the following idempotents

$$
1 = \frac{2}{1} = 1;
$$
 $0 = \frac{1}{2}(1 + 3);$ $1 = 0:$ (7.2)

The idempotents correspond via

$$
f = i(2 \t 1); \t(7.3)
$$

to the square roots of 1:

$$
f_1 = i1 =
$$
 $\begin{matrix} i & 0 \\ 0 & i \end{matrix}$; $f_0 = i_3 =$ $\begin{matrix} i & 0 \\ 0 & i \end{matrix}$; $f_{-1} = i1 =$ $\begin{matrix} i & 0 \\ 0 & i \end{matrix}$; (7.4)

where by complex conjugation $f_{1} = \overline{f_{1}}$. Let the idempotent $\begin{pmatrix} 0 & \frac{1}{2}(1 & 3) \\ 0 & 0 & \frac{1}{2}(1 & 3) \end{pmatrix}$ correspond to the matrix $f_0^0 = i_3$: We observe that f_0 is conjugate to $f_0^0 = \frac{1}{1} f_0$ $1 = \frac{1}{1} 2 = f_0$ using $\frac{1}{1} = \frac{1}{1}$ but f_1 is not conjugate to f $_1$. Therefore, only f₁; f₀; f₁ lead to three distinct conjugacy classes of square roots of 1 in M (2; C). Compare Appendix B for the corresponding computations with CLIFFORD for Maple.

¹⁷ Compare Footnote 14.

In general, if A = M (2d; C), then dim(A) = $8 d²$. The group G(A) has one connected component. The square roots of 1 in A are in bijection with the idempotents [2] according to (7.3). According¹⁸ to (7.3) and its inverse

 $=\frac{1}{2}(1 \text{ if })$ the square root of 1 with Spec(f) = k=d = 1, i.e. k = d (see below), always corresponds to the trival idempotent $= 0$, and the square root of 1 with $Spec(f_+) = k=d = +1, k = +d$, corresponds to the identity idempotent $+ = 1$.

If f is a square root of 1, then $V = C^{2d}$ is the direct sum of the eigenspace $\frac{10}{3}$ associated with the eigenvalues and i. There is an integer k such that the dimensions of the eigenspaces are respectived $+ k$ and d k. Moreover, d k d. Two square roots of 1 are conjugate if and only if they give the same integerk. Then, all elements of Cent(f) consist of diagonal block matrices with 2 square blocks of $d + k$ (d + k) matrices and $(d \t k)$ $(d \t k)$ matrices. Therefore, the C-dimension of Cent (f) is $(d + k)^2 + (d - k)^2$. Hence the R-dimension (2.1) of the conjugacy class of :

$$
8d2 \quad 2(d+k)2 \quad 2(d+k)2 = 4(d2 k2): \quad (7.5)
$$

Also, from the equality $tr(f) = (d + k)i$

with an integer k other than 0 is mapped by complex conjugation to the class associated with k. In particular the complex conjugation maps the classf! g (associated with $k = d$) to the classf ! g associated with $k = d$.

All these observations can easily veri ed for the above example of $d = 1$ of the Pauli matrix algebra $A = M(2; C)$. For $d = 2$ we have the isomorphism of A = M (4; C) with C'(0; 5), C'(2; 3) and C'(4; 1). While C'(0; 5) is important in Cli ord analysis, $C'(4, 1)$ is both the geometric algebra of the Lorentz spaceR^{4;1} and the conformal geometric algebra of 3D Euclidean

 $!=$ e_{12345} : Again, Spec(

where $n_1 + n_2 = 2d = 8$ and $n_1 = d + k = 4 + k$ and $n_2 = d$ k = 4 k. The ordinary root of 1 corresponds tok = 0 whereas the exceptional roots correspond to $k \oplus 0$:

- 1. When k = 4; we have $_4(t) = (t \ i)^8$; $m_4(t) = t \ ii$; and $F_4 =$ diag(}_ ⁸|
ك i;:::;i) which in the representation used by CLIFFORD [3] corresponds to the non-trivial central element $f_4 = 1 = e_{1234567}$: Clearly, Spec(₄) = 1 = $\frac{k}{d}$; Scal(f₄) = 0; the C-dimension of the centralizer Cent(f₄) is 64; and the R-dimension of the conjugacy class of $_4$ is zero since f_4 2 $Z(A)$: Thus, the R-dimension of the class is again zero in agreement with (7.5).
- 2. When k = 4; we have $_4(t) = (t + i)^8$; m $_4(t) = t + i$; and $F_4 = diag($ z___}⁸ ___{ i; :::; i) which corresponds to f $_4 = 1$ = $e_{1234567}$: Again, Spec $\begin{pmatrix} 4 \end{pmatrix} = 1 = \frac{k}{d}$; Scal $\begin{pmatrix} 4 \end{pmatrix} = 0$; the C-dimension of the centralizer Cent(f) is 64 and the conjugacy class of $\frac{4}{4}$ con oe

When k = 1; then
$$
1(t) = (t i)^3(t + i)^5
$$
 and m $1(t) = (t i)(t + i)$:
\nThen the root F $1 = diag(i; i; i; i; \dots; i)$ corresponds to
\n
$$
f_1 = \frac{1}{4}(e_{23} - e_{45} + 3e_{67} + e_{123} - e_{145} - e_{167} - e_{234567} - e_{1234567})
$$
 (7.18)
\nThus, Spec $(1) = \frac{1}{4} = \frac{k}{d}$ and soft₁ is another exceptional root.
\nWhen k = 2; then $2(t) = (t i)^2(t + i)^6$ and $m_2(t) = (t i)(t + i)$:
\nThen the root F $2 = diag(i; i; \frac{z - i}{i; \dots; i})$ corresponds to
\n
$$
f_2 = \frac{1}{2}(e_{67} - e_{45} + e_{123} - e_{1234567})
$$
 (7.19)
\nSince Spec $(2) = \frac{1}{2} = \frac{k}{d}$, we see that 2 is also an exceptional root.
\nWhen k = 3; then $3(t) = (t i)(t + i)^7$ and $m_3(t) = (t i)(t + i)$:
\nThen the root F $3 = diag(i; \frac{z - i}{i; \dots; i})$ corresponds to
\n
$$
f_3 = \frac{1}{4}(e_{23} - e_{45} + e_{67} + e_{123} - e_{145} + e_{167} + e_{234567} - 3e_{1234567})
$$
 (7.20)

Again, Spec $\left(\begin{array}{c} 3 \end{array}\right) = \frac{3}{4} = \frac{k}{d}$ and so f $\frac{1}{3}$ is another exceptional root of 1.

As expected, we can also see that the roots and ! are related via the reversion whereasf $_3 = 6$ $_3$, $_2 = 6$ $_2$, $_1 = 6$ $_1$ where denotes the conjugation in $C'(7; 0)$:

8. Conclusions

We proved that in all cases Scalf $) = 0$ for every square root of 1 in A isomorphic to $C'(p; q)$. We distinguished ordinary square roots of 1, and exceptional ones.

In all cases the ordinary square roots of 1 constitute a unique conjugacy class of dimension dimA)=2 which has as many connected components as the group G(A) of invertible elements in A. Furthermore, we have Spec(f) = 0 (zero pseudoscalar part) if the associated ring is R², H², or C. The exceptional square roots of 1 only exist if $A = M$ (2d; C) (see Section 7).

For $A = M$ (2d; R) of Section 3, the centralizer and the conjugacy class of a square root f of 1 both have R-dimension $2d^2$ with two connected components, pictured in Fig. 2 for $d = 1$.

For A = M (2d; R²) = M (2d; R) M (2d; R) of Section 4, the square roots of $(1; 1)$ are pairs of two square roots of 1 in M $(2d;R)$. They constitute a unique conjugacy class with four connected components, each of dimension 4d². Regarding the four connected components, the group Inn(A) induces the permutations of the Klein group whereas the quotent group Aut(A)=Inn(A) is isomorphic to the group of isometries of a Euclidean square in 2D.

For $A = M$ (d; H) of Section 5, the submanifold of the square roots of 1 is a single connected conjugacy class $\mathbf{\mathfrak{R}}$ -dimension $2\mathsf{d}^2$ equal to the R-dimension of the centralizer of everyf . The easiest example isH itself for $d = 1.$

For A = M $(d; H²)$ = M (2d; H) M (2d; H) of Section 6, the square roots of (1; 1) are pairs of two square roots $(f; f \theta)$ of 1 in M (2d; H) and constitute a unique connected conjugacy class d R-dimension 4d². The group Aut(A) has two connected components: the neutral component InA) connected to the identity and the second component containing the swap automorphism (f; f $\binom{9}{7}$ 7! (f $\binom{6}{7}$ f). The simplest case ford = 1 is H² isomorphic to C`(0; 3).

For $A = M$ (2d; C) of Section 7, the square roots of 1 are in bijection to the idempotents. First, the ordinary square roots of 1 (with $k = 0$) constitute a conjugacy class ofR-dimension 4d² of a single connected component which is invariant under Aut(A). Second, there are 2 conjugacy classes of exceptional square roots of 1, each composed of a single connected component, characterized by equality $Spec() = k=d$ (the pseudoscalar coe cient) with k 2 f 1; 2; :: :; dg, and their R-dimensions are $4\theta^2$ k²). The group Aut(A) includes conjugation of the pseudoscalar! 7! ! which maps the conjugacy class associated withk to the class associated with k. The simplest case ford = 1 is the Pauli matrix algebra isomorphic to the geometric algebra C`(3;0) of 3D Euclidean spaceR³, and to complexe opwa1(i)-111.3031.52 0 Td [(A)3.499e sw2-11.301(e1(i)-11.30

k	Ιk	$_{k}(t)$
	$= e_{123}$	$)^2$
0	e_{23}	$i)(t + i)$ (t
	e_{123}	$(t + i)^2$

Table 1. Square roots of 1 in $C'(3; 0) = M(2; C)$, d = 1

k	fĸ	$_{k}$ (t)
2	$=$ e_{12345}	(t
	$\frac{1}{2}$ (e ₂₃ + e ₁₂₃ e ₂₃₄₅ + e ₁₂₃₄₅)	$(i)^3$ (t + i) (t)
	e_{123}	$(i)^2(t+i)^2$ (t
	$\frac{1}{2}$ (e ₂₃ + e ₁₂₃ + e ₂₃₄₅ e_{12345}	$(t i)(t + i)^3$
	$=$ e ₁₂₃₄₅	$(t + i)^4$

Table 2. Square roots of 1 in C`(4; 1) = M (4; C), $d = 2$

k	fk	$_{k}(t)$
2	$= e_{12345}$	
	$\frac{1}{2}$ (e ₃ + e ₁₂ + e ₄₅ + e ₁₂₃₄₅)	$i)^3(t + i)$ (t
0	e_{45}	$(i)^2(t+i)^2$
	e_{12345} $e_3 + e_{12} + e_{45}$	$i)(t + i)^3$ (t)
\mathcal{P}	e ₁₂₃₄₅	$(t + i)^4$

Table 3. Square roots of 1 in C`(0; 5) = M (4; C), $d = 2$

k	Ϊk	$_{k}$ (t)
$\overline{2}$	$=$ e_{12345}	i) ⁴ (t
	$\frac{1}{2}$ (e ₃ + e ₁₃₄ + e ₂₃₅ + !)	$i)^3(t + i)$ (t
0	e_{134}	$(i)^2(t+i)^2$ (t
	$\frac{1}{2}$ $\left \cdot \right $ $e_3 + e_{134} + e_{235}$	$(t i)(t + i)^3$
2	e ₁₂₃₄₅	$(t + i)^4$

Table 4. Square roots of 1 in C`(2; 3) = M (4; C), $d = 2$

Appendix B. A sample Maple worksheet

In this appendix we show a computation of roots of in C`(3;0) in CLIF-FORD. Although these computations certainly can be performed by hand, 22 E. Hitzer, J. Helmstetter and R. Ablamowicz

the actual Maple worksheets where these computations have den performed, see [18].

>

$$
M_1 := \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]
$$

The basis element e is represented by the following matrix

$$
M_2 := \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]
$$

The basis element $e2$ is represented by the following matrix

$$
M_3 := \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]
$$

The basis element e3 is represented by the following matrix

$$
M_4 := \left[\begin{array}{cc} 0 & e23 \\ e23 & 0 \end{array} \right]
$$

The basis element e e 2 is represented by the following matrix

$$
M_5 := \left[\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array} \right]
$$

The basis element e 3 is represented by the following matrix

$$
M_6 := \left[\begin{array}{cc} 0 & e23 \\ e23 & 0 \end{array} \right]
$$

The basis element e^{23} is represented by the following matrix

$$
M_7 := \left[\begin{array}{cc} e23 & 0 \\ 0 & e23 \end{array} \right]
$$

The basis element e 23 is represented by the following matrix

$$
M_8 := \left[\begin{array}{cc} e23 & 0 \\ 0 & e23 \end{array} \right]
$$

 $>$ f \langle \downarrow =phi(F \langle \parallel M) \rangle $\stackrel{\bullet}{\sim}$ element in Cl(3) corresponding to F \langle \parallel cmul(f_{in}, f_{in}) $\ddot{\ }$, checking that this element is a root of \mathtt{Mu} , $\overset{\bullet}{\cdot}$ recalling minpoly of matrix F \vdots subs(e23=I,evalm(subs(t=evalm(F[-1]),Mu[-1]))); ##<<--F[-1] in Mu[-1] mu \perp =subs(I=reprI Mu \perp) \quad definim minpoly of f \parallel cmul(f) reprI Id) $\overset{\bullet}{\cdot}$ f satisfies mu

$$
f_{1} := e123
$$

Id; $t + 1$; $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $t = t + e123$; 0

Functions $Rd \text{ or } r \neq 2r$ and $Rd \text{ or } q \text{ or } q$ $\cdot \cdot$ of d and k compute the real dimension of the centralizer $Cent()$ and the conjugacy class off (see (7.4)).

> RdimCentralizer =(d k) >2 ((d k) 2 (d k) 2) from the theory > RdimConj&Class =(d k) >4 (d 2 k 2) ** from the theory

RdimCentralizer := (d; k) ! $2(d + k)^{2} + 2(d - k)^{2}$

RdimConjugClass := $(d; k)$! $4d^2$ $4k^2$

Now, we compute the centralizers of the roots and use notation d; k; n_1 ; n₂ displayed in Examples.

 $\text{Case } k = 1$: > d = $k = n$, =d k n2 =d k
 $A = -di\mathcal{L}$ (I n I n2) this is the first matrix root of $n1 := 2$; $n2 := 0$; $A1 :=$ $\sqrt{2}$ 4 I 0 0 I 1 $\overline{1}$ $>$ f[e122 phid(A;M) cmul(f[1], f[1]) Scal(f[1]) 3()2()2(mm34a) 1(f 3 4r32 ard($> f(0)$, =phi(A M) cmul(f(0),f(0)) Scal(f(0)), Spec(f(0)) $f_0 := e23;$ **Id**; 0; 0

> LL_{\pm} =Centralizer(f \pm clibas) $$ $$ centralizer of f \pm dimCentralizer_=nops(LL) \quad \quad real dimension of centralizer of f \langle $RdimCentralizer(d_k)$ \quad $\rlap{!}{\bullet}$ dimension of centralizer of $f(\quad)$ from theory evalb(dimCentralizer=RdimCentralizer(d k)) ** checki \mathbf{x} equality

LL0 := [Id; e1; e23; e123]

dimCentralizer := 4 ; 4 ; true

Casek = 1 : $> d = k$ = $k = 0$; n = d k n 2 = d k

```
> 'F\langle '=evalm(F\langle ) \rangle . square root of \langle in C(2)
    \mathtt{Mul} and \blacksquare . The minpoly of matrix \mathtt{F} and \blacksquare'f\leftarrow'=f\leftarrow'\leftarrow square root of in Cl(3)
    \mathfrak{m}{\bf u} and \mathfrak{m}^1 are minpoly of element for \mathfrak{m}F_{1} =\sqrt{2}e23 0
                                                                  1
                                                                  \vert; t + I
```

$$
\begin{array}{c|cc}\n1 & 0 & e^{23} \\
f & = & e^{123}\n\end{array}
$$

- [13] D. Hestenes, New Foundations for Classical Mechanics. Kluwer, Dordrecht, 1999.
- [14] D. Hestenes, G. Sobczyk, Cli ord Algebra to Geometric Calculus. Kluwer, Dordrecht, 1984.
- [15] E. Hitzer, Quaternion Fourier Transform on Quaternion Fields and Generalizations. Adv. Appl. Cli ord Algebras 17(3) (2007), 497{517.
- [16] E. Hitzer, OPS-QFTs: A New Type of Quaternion Fourier Transforms Based on the Orthogonal Planes Split with One or Two General Pure Quaternions. Numerical Analysis and Applied Mathematics ICNAAM 2011, AI P Conf. Proc. 1389 (2011), 280{283; DOI: 10.1063/1.3636721.
- [17] E. Hitzer, R. Ablamowicz, Geometric Roots of 1 in Cli ord Algebras C`(p; q) with $p + q$ 4. Adv. Appl. Cli ord Algebras, Online First, 13 July 2010. D \overline{O} I: 10.1007/s00006-010-0240-x.
- [18] E. Hitzer, J. Helmstetter, and R. Ablamowicz, Maple wo rksheets created with CLIFFORD for a verication of results presented in this paper, http://math.tntech.edu/rafal/publications.html (c2012).
- [19] E. Hitzer, B. Mawardi, Uncertainty Principle for the Cli ord Algebra $C_{n;0}$; n = 3 (mod 4) Based on Cli ord Fourier Transform. In Springer SCI book series