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1. Introduction

The young London Goldsmid professor of applied mathematicsW. K. Cli�ord
created hisgeometric algebras1 in 1878 inspired by the works of Hamilton on
quaternions and by Grassmann's exterior algebra. Grassmann invented the
antisymmetric outer product of vectors, that regards the oriented parallelo-
gram area spanned by two vectors as a new type of number, commonly called
bivector. The bivector represents its own plane, because outer products with
vectors in the plane vanish. In three dimensions the outer product of three
linearly independent vectors de�nes a so-called trivectorwith the magnitude
of the volume of the parallelepiped spanned by the vectors. Its orientation
(sign) depends on the handedness of the three vectors.

In the Cli�ord algebra [13] of R3 the three bivector side faces of a
unit cube f e1e2; e2e3; e3e1g oriented along the three coordinate directions
f e1; e2; e3g correspond to the three quaternion unitsi , j , and k . Like quater-
nions, these three bivectors square to minus one and generate the rotations
in their respective planes.

Beyond that Cli�ord algebra allows to extend complex numbers to
higher dimensions [4,14] and systematically generalize our knowledge of com-
plex numbers, holomorphic functions and quaternions into the realm of Clif-
ford analysis. It has found rich applications in symbolic computation, physics,
robotics, computer graphics, etc. [5, 6, 9, 11, 23]. Since bivectors and trivec-
tors in the Cli�ord algebras of Euclidean vector spaces square to minus one,
we can use them to create new geometric kernels for Fourier transformations.
This leads to a large variety of new Fourier transformations, which all deserve
to be studied in their own right [6,10,15,16,19,20,22,25{29,31].

In our current research we will treat square roots of� 1 in Cli�ord alge-
bras C`(p; q) of both Euclidean (positive de�nite metric) and non-Eucli dean
(inde�nite metric) non-degenerate vector spaces,Rn = Rn; 0 and Rp;q , re-
spectively. We know from Einstein's special theory of relativity that non-
Euclidean vector spaces are of fundamental importance in nature [12]. They
are further, e.g., used in computer vision and robotics [9] and for general
algebraic solutions to contact problems [23]. Therefore this chapter is about
characterizing square roots of� 1 in all Cli�ord algebras C`(p; q), extending
previous limited research onC`(3; 0) in [32] and C`(p; q); n = p+ q � 4 in [17].
The manifolds of square roots of� 1 in C`(p; q), n = p+ q = 2, compare Table
1 of [17], are visualized in Fig. 1.

First, we introduce necessary background knowledge of Cli�ord algebras
and matrix ring isomorphisms and explain in more detail how we will char-
acterize and classify the square roots of� 1 in Cli�ord algebras in Section 2.
Next, we treat section by section (in Sections 3 to 7) the square roots of � 1
in Cli�ord algebras which are isomorphic to matrix algebras with associated

1 In his original publication [8] Cli�ord �rst used the term geometric algebras. Subsequently
in mathematics the new term Cli�ord algebras [24] has become the proper mathematical
term. For emphasizing the geometric nature of the algebra, some researchers continue [6,
13, 14] to use the original term geometric algebra(s).
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Cent(f )
T

G(A) is contained in the neutral7 connected component of G(A),
and the dimension of its conjugacy class is

dim(A) � dim(Cent( f )) : (2.1)

Note that for invertible g 2 Cent(f ) we have g� 1fg = f .
Besides, let Z(A) be the center of A , and let [A ; A
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instance, ! (mentioned above) and � ! are central square roots of� 1 in
M (2d; C
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are related as follows: tr(f ) = 2 dScal(f ). If f is a square root of� 1, it turns
V into a vector space overC (if the complex number i operates likef on V ).
If ( e1; e2; : : : ; ed) is a C-basis ofV , then (e1; f (e1); e2; f (e2); : : : ; ed; f (ed )) is
a R-basis ofV , and the 2d � 2d matrix of f in this basis is

diag
� �

0 � 1
1 0

�
; : : : ;

�
0 � 1
1 0

�

| {z }
d

�
(3.2)

Consequently all square roots of� 1 in A are conjugate. The centralizer of a
square rootf of � 1 is the algebra of allC-linear endomorphismsg of V (since
i operates likef on V ). Therefore, the C-dimension of Cent(f ) is d2 and its
R-dimension is 2d2. Finally, the dimension (2.1) of the conjugacy class off is
dim(A) � dim(Cent( f )) = 4 d2 � 2d2 = 2 d2 = dim( A)=2. The two connected
components of G(A) are determined by the sign of the determinant. Because
of the next lemma, the R-determinant of every element of Cent(f ) is �
0. Therefore, the intersection Cent(f )

T
G(A) is contained in the neutral

connected component of G(A) and, consequently, the conjugacy class off
has two connected components like G(A). Because of the next lemma, theR-
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A (with f; f 0 2 M (2d; R)) has a determinant in R2 which is obviously
(det( f ); det(f 0)), and the four connected components of G(A) are determined
by the signs of the two components of detR2 (f; f 0).

The lowest dimensional example (d = 1) is C`(2; 1) isomorphic to
M (2; R2). Here the pseudoscalar! = e123 has square! 2 = +1. The cen-
ter of the algebra is f 1; ! g and includes the idempotents � � = (1 � ! )=2,
� 2

� = � � , � + � � = � � � + = 0. The basis of the algebra can thus be written
as f � + ; e1� + ; e2� + ; e12� + ; � � ; e1� � ; e2� � ; e12� � g, where the �rst (and the last)
four elements form a basis of the subalgebraC`(2; 0) isomorphic to M (2; R).
In terms of matrices we have the identity matrix ( 1; 1) representing the scalar
part, the idempotent matrices (1; 0), (0; 1), and the ! matrix ( 1; � 1), with 1
the unit matrix of M (2; R).

The square roots of (� 1; � 1) in A are pairs of two square roots of� 1
in M (2d; R). Consequently they constitute a unique conjugacy class with
four connected components of dimension 4d2 = dim( A)=2. This number
can be obtained in two ways. First, since every element (f; f 0) 2 A (with
f; f 0 2 M (2d; R)) has twice the dimension of the componentsf 2 M (2d; R)
of Section 3, we get the component dimension 2� 2d2 = 4 d2. Second, the cen-
tralizer Cent( f; f 0) has twice the dimension of Cent(f ) of M (2d; R), therefore
dim(A) � Cent(f; f 0) = 8 d2 � 4d2 = 4 d2. In the above example for d = 1
the four components are characterized according to (3.5) bythe values of the
coe�cients of �e 12 � + and � 0e12 � � as

c1 : � � 1; � 0 � 1;

c
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whence Scal(f; f 0) = Spec(f; f 0) = 0 if ( f; f 0) is a square root of (� 1; � 1),
compare with (5.2).

The group Aut( A) has two17 connected components; the neutral com-
ponent is Inn(A), and the other component contains the swap automorphism
(f; f 0) 7! (f 0; f ).

The simplest example isd = 1, A = H2 , where we have the identity
pair (1; 1) representing the scalar part, the idempotents (1; 0), (0; 1), and !
as the pair (1; � 1).

A = H2 is isomorphic to C`(0; 3). The pseudoscalar! = e123 has the
square ! 2 = +1. The center of the algebra is f 1; ! g, and includes the idem-
potents � � = 1

2 (1� ! ), � 2
� = � � , � + � � = � � � + = 0. The basis of the algebra

can thus be written as f � + ; e1� + ; e2� + ; e12� + ; � � ; e1� � ; e2� � ; e12� � g where the
�rst (and the last) four elements form a basis of the subalgebra C`(0; 2) iso-
morphic to H.

7. Square roots of� 1 in M (2d;C)

The lowest dimensional example ford = 1 is the Pauli matrix algebra A =
M (2; C) isomorphic to the geometric algebraC`(3; 0) of the 3D Euclidean
space andC`(1; 2). The C`(3; 0) vectors e1; e2; e3 correspond one-to-one to
the Pauli matrices

� 1 =
�

0 1
1 0

�
; � 2 =

�
0 � i
i 0

�
; � 3 =

�
1 0
0 � 1

�
; (7.1)

with � 1� 2 = i� 3 =
�

i 0
0 � i

�
. The element ! = � 1� 2� 3 = i1 represents the

central pseudoscalare123 of C`(3; 0) with square ! 2 = � 1. The Pauli algebra
has the following idempotents

� 1 = � 2
1 = 1; � 0 =

1
2

(1 + � 3); � � 1 = 0 : (7.2)

The idempotents correspond via

f = i (2� � 1); (7.3)

to the square roots of� 1:

f 1 = i1 =
�

i 0
0 i

�
; f 0 = i� 3 =

�
i 0
0 � i

�
; f � 1 = � i1 =

�
� i 0
0 � i

�
; (7.4)

where by complex conjugation f � 1 = f 1 . Let the idempotent � 0
0 = 1

2 (1 � � 3)
correspond to the matrix f 0

0 = � i� 3: We observe that f 0 is conjugate to
f 0

0 = � � 1
1 f 0� 1 = � 1� 2 = f 0 using � � 1

1 = � 1 but f 1 is not conjugate to
f � 1 . Therefore, only f 1; f 0; f � 1 lead to three distinct conjugacy classes of
square roots of� 1 in M (2; C). Compare Appendix B for the corresponding
computations with CLIFFORD for Maple.

17 Compare Footnote 14.
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In general, if A = M (2d; C), then dim( A) = 8 d2. The group G(A) has
one connected component. The square roots of� 1 in A are in bijection with
the idempotents � [2] according to (7.3). According18 to (7.3) and its inverse
� = 1

2 (1 � if ) the square root of � 1 with Spec(f � ) = k=d = � 1, i.e. k = � d
(see below), always corresponds to the trival idempotent� � = 0, and the
square root of � 1 with Spec(f + ) = k=d = +1, k = + d, corresponds to the
identity idempotent � + = 1.

If f is a square root of � 1, then V = C2d is the direct sum of the
eigenspaces19 associated with the eigenvaluesi and � i . There is an integer
k such that the dimensions of the eigenspaces are respectively d + k and
d � k. Moreover, � d � k � d. Two square roots of � 1 are conjugate if and
only if they give the same integerk. Then, all elements of Cent(f ) consist of
diagonal block matrices with 2 square blocks of (d + k) � (d + k) matrices
and (d � k) � (d � k) matrices. Therefore, the C-dimension of Cent(f ) is
(d + k)2 + ( d � k)2 . Hence theR-dimension (2.1) of the conjugacy class off :

8d2 � 2(d + k)2 � 2(d � k)2 = 4( d2 � k2): (7.5)

Also, from the equality tr( f ) = ( d + k)i
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with an integer k other than 0 is mapped by complex conjugation to the
class associated with� k. In particular the complex conjugation maps the
classf ! g (associated with k = d) to the class f� ! g associated withk = � d.

All these observations can easily veri�ed for the above example of d = 1
of the Pauli matrix algebra A = M (2; C). For d = 2 we have the isomor-
phism of A = M (4; C) with C`(0; 5), C`(2; 3) and C`(4; 1). While C`(0; 5)
is important in Cli�ord analysis, C`(4; 1) is both the geometric algebra of
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� ! = � e12345:
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where n1 + n2 = 2 d = 8 and n1 = d + k = 4 + k and n2 = d � k = 4 � k.
The ordinary root of � 1 corresponds tok = 0 whereas the exceptional roots
correspond to k 6= 0 :

1. When k = 4 ; we have � 4(t) = ( t � i )8; m4(t) = t � i; and F4 =

diag(

8
z }| {
i; : : : ; i ) which in the representation used by CLIFFORD [3] cor-

responds to the non-trivial central element f 4 = ! = e1234567: Clearly,
Spec(f 4) = 1 = k

d ; Scal(f 4) = 0; the C-dimension of the centralizer
Cent(f 4) is 64; and the R-dimension of the conjugacy class off 4 is zero
since f 4 2 Z(A): Thus, the R-dimension of the class is again zero in
agreement with (7.5).

2. When k = � 4; we have � � 4(t) = ( t + i )8; m� 4(t) = t + i; and

F � 4 = diag(

8
z }| {
� i; : : : ; � i ) which corresponds to f � 4 = � ! = � e1234567:

Again, Spec(f � 4) = � 1 = k
d ; Scal(f � 4) = 0; the C-dimension of the

centralizer Cent(f ) is 64 and the conjugacy class off � 4 �con o



18 E. Hitzer, J. Helmstetter and R. Ab lamowicz

When k = � 1; then � � 1(t) = ( t � i )3(t + i )5 and m� 1(t) = ( t � i )( t + i ):

Then the root F � 1 = diag( i; i; i;

5
z }| {
� i; : : : ; � i ) corresponds to

f � 1 =
1
4

(e23 � e45 + 3 e67 + e123 � e145 � e167 � e234567 � e1234567): (7.18)

Thus, Spec(f � 1) = � 1
4 = k

d and so f � 1 is another exceptional root.
When k = � 2; then � � 2(t) = ( t � i )2(t + i )6 and m� 2(t) = ( t � i )( t + i ):

Then the root F � 2 = diag( i; i;

6
z }| {
� i; : : : ; � i ) corresponds to

f � 2 =
1
2

(e67 � e45 + e123 � e1234567): (7.19)

Since Spec(f � 2) = � 1
2 = k

d , we see thatf � 2 is also an exceptional root.
When k = � 3; then � � 3(t) = ( t � i )( t + i )7 and m� 3(t) = ( t � i )( t + i ):

Then the root F � 3 = diag( i;

7
z }| {
� i; : : : ; � i ) corresponds to

f � 3 =
1
4

(e23 � e45 + e67 + e123 � e145 + e167 + e234567 � 3e1234567): (7.20)

Again, Spec(f � 3) = � 3
4 = k

d and so f � 3 is another exceptional root
of � 1.

As expected, we can also see that the roots! and � ! are related
via the reversion whereasf 3 = � �f � 3 , f 2 = � �f � 2 , f 1 = � �f � 1 where �
denotes the conjugation inC`(7; 0):

8. Conclusions

We proved that in all cases Scal(f ) = 0 for every square root of � 1 in A
isomorphic to C`(p; q). We distinguished ordinary square roots of � 1, and
exceptional ones.

In all cases the ordinary square rootsf of � 1 constitute a unique con-
jugacy class of dimension dim(A)=2 which has as many connected compo-
nents as the group G(A) of invertible elements in A . Furthermore, we have
Spec(f ) = 0 (zero pseudoscalar part) if the associated ring isR2, H2 , or C.
The exceptional square roots of� 1 only exist if A �= M (2d; C) (see Sec-
tion 7).

For A = M (2d; R) of Section 3, the centralizer and the conjugacy class
of a square root f of � 1 both have R-dimension 2d2 with two connected
components, pictured in Fig. 2 for d = 1.

For A = M (2d; R2) = M (2d; R) � M (2d; R) of Section 4, the square
roots of (� 1; � 1) are pairs of two square roots of� 1 in M (2d; R). They
constitute a unique conjugacy class with four connected components, each of
dimension 4d2. Regarding the four connected components, the group Inn(A)
induces the permutations of the Klein group whereas the quotient group
Aut( A)=Inn(A) is isomorphic to the group of isometries of a Euclidean square
in 2D.
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For A = M (d; H) of Section 5, the submanifold of the square rootsf
of � 1 is a single connected conjugacy class ofR-dimension 2d2 equal to the
R-dimension of the centralizer of everyf . The easiest example isH itself for
d = 1.

For A = M (d; H2) = M (2d; H) � M (2d; H) of Section 6, the square
roots of (� 1; � 1) are pairs of two square roots (f; f 0) of � 1 in M (2d; H)
and constitute a unique connected conjugacy class ofR-dimension 4d2. The
group Aut( A) has two connected components: the neutral component Inn(A)
connected to the identity and the second component containing the swap
automorphism (f; f 0) 7! (f 0; f ). The simplest case ford = 1 is H2 isomorphic
to C`(0; 3).

For A = M (2d; C) of Section 7, the square roots of� 1 are in bijection
to the idempotents. First, the ordinary square roots of � 1 (with k = 0) con-
stitute a conjugacy class ofR-dimension 4d2 of a single connected component
which is invariant under Aut( A). Second, there are 2d conjugacy classes of
exceptional square roots of� 1, each composed of a single connected compo-
nent, characterized by equality Spec(f ) = k=d (the pseudoscalar coe�cient)
with � k 2 f 1; 2; : : :; dg, and their R-dimensions are 4(d2 � k2). The group
Aut( A) includes conjugation of the pseudoscalar! 7! � ! which maps the
conjugacy class associated withk to the class associated with� k. The sim-
plest case ford = 1 is the Pauli matrix algebra isomorphic to the geometric
algebra C`(3; 0) of 3D Euclidean spaceR3
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k f k � k (t)

1 ! = e123 (t � i )2

0 e23 (t � i )( t + i )

� 1 � ! = � e123 (t + i )2

Table 1. Square roots of� 1 in C`(3; 0) �= M (2; C), d = 1

k f k � k (t)

2 ! = e12345 (t � i )4

1 1
2 (e23 + e123 � e2345 + e12345) (t � i )3(t + i )

0 e123 (t � i )2(t + i )2

� 1 1
2 (e23 + e123 + e2345 � e12345) (t � i )( t + i )3

� 2 � ! = � e12345 (t + i )4

Table 2. Square roots of� 1 in C`(4; 1) �= M (4; C), d = 2

k f k � k (t)

2 ! = e12345 (t � i )4

1 1
2 (e3 + e12 + e45 + e12345) (t � i )3(t + i )

0 e45 (t � i )2(t + i )2

� 1 1
2 (� e3 + e12 + e45 � e12345) (t � i )( t + i )3

� 2 � ! = � e12345 (t + i )4

Table 3. Square roots of� 1 in C`(0; 5) �= M (4; C), d = 2

k f k � k (t)

2 ! = e12345 (t � i )4

1 1
2 (e3 + e134 + e235 + ! ) (t � i )3(t + i )

0 e134 (t � i )2(t + i )2

� 1 1
2 (� e3 + e134 + e235 � ! ) (t � i )( t + i )3

� 2 � ! = � e12345 (t + i )4

Table 4. Square roots of� 1 in C`(2; 3) �= M (4; C), d = 2

Appendix B. A sample Maple worksheet
In this appendix we show a computation of roots of� 1 in C`(3; 0) in CLIF-
FORD. Although these computations certainly can be performed by hand,
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M 1 :=

2

4

1 0

0 1

3

5

‘The basis element‘, e1, ‘is represented by the following matrix:‘

M 2 :=

2

4

1 0

0 � 1

3

5

‘The basis element‘, e2, ‘is represented by the following matrix:‘

M 3 :=

2

4

0 1

1 0

3

5

‘The basis element‘, e3, ‘is represented by the following matrix:‘

M 4 :=

2

4

0 � e23

e23 0

3

5

‘The basis element‘, e12, ‘is represented by the following matrix:‘

M 5 :=

2

4

0 1

� 1 0

3

5

‘The basis element‘, e13, ‘is represented by the following matrix:‘

M 6 :=

2

4

0 � e23

� e23 0

3

5

‘The basis element‘, e23, ‘is represented by the following matrix:‘

M 7 :=

2

4

e23 0

0 � e23

3

5

‘The basis element‘, e123, ‘is represented by the following matrix:‘

M 8 :=

2

4

e23 0

0 e23

3

5
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> f[-1]:=phi(F[-1],M); ##<<--element in Cl(3,0) corresponding to F[-1]
cmul(f[-1],f[-1]); ##<<--checking that this element is a root of -1
Mu[-1]; ##<<--recalling minpoly of matrix F[-1]
subs(e23=I,evalm(subs(t=evalm(F[-1]),Mu[-1]))); ##<<--F[-1] in Mu[-1]
mu[-1]:=subs(I=reprI,Mu[-1]); ##<<--defining minpoly of f[-1]
cmul(f[-1]+reprI,Id); ##<<--f[-1] satisfies mu[-1]

f � 1 := � e123

� Id ; t + I;

2

4

0 0

0 0

3

5

� � 1 := t + e123 ; 0

Functions RdimCentralizer and RdimConjugClass of d and k compute
the real dimension of the centralizer Cent(f ) and the conjugacy class off
(see (7.4)).
> RdimCentralizer:=(d,k)->2*((d+k)^2+(d-k)^2); ##<<--from the theory
> RdimConjugClass:=(d,k)->4*(d^2-k^2); ##<<--from the theory

RdimCentralizer := ( d; k) ! 2 (d + k)2 + 2 ( d � k)2

RdimConjugClass := ( d; k) ! 4d2 � 4 k2

Now, we compute the centralizers of the roots and use notation d; k; n1; n2

displayed in Examples.
Casek = 1 :
> d:=1:k:=1:n1:=d+k;n2:=d-k;

A1:=diag(I$n1,-I$n2); ##<<-- this is the first matrix root of -1

n1 := 2 ; n2 := 0 ; A1 :=

2

4

I 0

0 I

3

5

>
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> f[0]:=phi(A0,M); cmul(f[0],f[0]); Scal(f[0]), Spec(f[0]);

f 0 := e23 ; � Id ; 0; 0

> LL0:=Centralizer(f[0],clibas); ##<<--centralizer of f[0]
dimCentralizer:=nops(LL0); ##<<--real dimension of centralizer of f[0]
RdimCentralizer(d,k); ##<<--dimension of centralizer of f[0] from theory
evalb(dimCentralizer=RdimCentralizer(d,k)); ##<<--checking equality

LL0 := [ Id ; e1 ; e23 ; e123 ]

dimCentralizer := 4 ; 4; true

Casek = � 1 :
>
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> ’F[-1]’=evalm(F[-1]); ##<<--square root of -1 in C(2)
Mu[-1]; ##<<--minpoly of matrix F[-1]
’f[-1]’=f[-1]; ##<<--square root of -1 in Cl(3,0)
mu[-1]; ##<<--minpoly of element f[-1]

F � 1 =

2

4

� e23 0

0 � e23

3

5 ; t
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