
DEPARTMENT OF MATHEMATICS

TECHNICAL REPORT

ON PARALLELIZING THE CLIFFORD

ALGEBRA PRODUCT FOR CLIFFORD

RAFA L AB LAMOWICZ

BERTFRIED FAUSER

April 2012

No. 2012-2

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505

On Parallelizing the Clifford Algebra Product

for CLIFFORD

Rafał Abłamowicz and Bertfried Fauser

Abstract We present, as a proof of concept, a way to parallelize the Clifford prod-

uct in C`p,q

2 Rafał Abłamowicz and Bertfried Fauser

Recent applications in engineering use real Clifford (geometric) algebras like

C`8,2 when modeling geometric transformations in robotics. [13] Thus, there is a

need for efficient and fast symbolic computations which not only take advantage of

the mathematical theory, for example by using the periodici

On Parallelizing the Clifford Algebra Product for CLIFFORD 3

procedures, namely, the parallel cmulWpar against the sequential cmulW, cmul with

cmulRS, and cmul with cmulNUM for some test computations of the most general

Clifford polynomials in C`p,q for p + q ≤ 9. Commented code of all Maple work-

sheets showing these computations including parallelized cmulNUM and cmulRS is

available at [4].

2 Code of cmulW and cmulWpar

2.1 The Clifford product based on Walsh functions

First, we present the code of cmulW which we use later in the parallel proce-

dure cmulWpar. The latter procedure relies on several other procedures, which we

do display here for the sake of completeness, and which handle things like pro-

ducing the Clifford product on basis monomials (Walsh) and the data conversion

(convert(<bas>,<data-type1>) from CLIFFORD’s internal data structures for

basis monomials and their representations as binary tuple used by the oplus and

Walsh procedures. As cmulRS and cmulNUM do not have to perform these conver-

sions, there is a slight loss of speed here due to the data conversion. twist provides

the proper sign factor due to the grading which is easily computed from the binary

(Gray code) representation of the Clifford monomials.

Listing 1 Clifford product on basis monomials eI, eJ using Walsh functions in C`p,q

cmulW:=proc(eI::clibasmon,eJ::clibasmon,

B1::{matrix,list(nonnegint)})

l o c a l a,b,ab,monab,Bsig,flag,i,dim_V_loc,ploc,qloc,

_BSIGNATUREloc;

-- this procedure depends on external variables

g l o b a l dim_V,_BSIGNATURE,p,q;

i f type(B1,list) then

ploc,qloc:=op(B1);

dim_V_loc:=ploc+qloc:

_BSIGNATUREloc:=[ploc,qloc]:

e l s e

ploc,qloc:=p,q; ###<<<-- this reads g l o b a l p and q

dim_V_loc:=dim_V: ###<<<-- this reads g l o b a l dim_V

_BSIGNATUREloc:=[ploc,qloc]:

i f not _BSIGNATURE=[ploc,qloc] then _BSIGNATURE:=[p,q] end i f :

end i f :

-- data structure conversion: string to binary

a,b:=convert(eI,clibasmon_to_binarytuple,dim_V_loc),

convert(eJ,clibasmon_to_binarytuple,dim_V_loc);

-- mod 2 binary addition

ab:=op lus(a,b);

-- data structure conversion: binary to string

monab:=convert(ab,binarytuple_to_clibasmon);

re turn

t w i s t(a,b,_BSIGNATUREloc)*Walsh(a,hinversegGrayCode(b))*monab;

4 Rafał Abłamowicz and Bertfried Fauser

end proc:

2.2 Maple’s threading mechanism for coarse grained parallel

computing

The followingexample is taken from Maple’s help page ?Threads:-Task:-Start.3

It explains how to split a computation into pieces when the computation is ‘large’

enough to profit from a parallel execution, and then execute the parallel tasks and

use a continuation function to produce the result. The example computes ∑
107

i=1 i.

Listing 2 Task threading example

c o n t i n u at io n := proc(a, b) # add two results

re turn a + b;

end proc;

ta sk := proc(i, j)

distributes the computation into tasks

l o c a l k;

i f (j-i < 1000) then

i f the range is small, just compute

re turn add(k, k=i..j);

e l s e

split computation into two parts

k := f l o o r((j-i)/2)+i;

produce two child tasks, by calling ta sk recursively

Threads:-Task:-Continue(c o n t i nuat ion ,

Task=[ta sk , i, k], Task=[ta sk , k+1, j]);

end i f ;

end proc;

compute sum 1..10ˆ7 parallel and using add

Threads:-Task:-S t a r t(ta sk ,1,10ˆ7) = add(i,i=1..10ˆ7);

The parallelism is coarse-grained, the user does not have to deal with threads, and,

for a large part, with locks. However, the involved routines have to be programmed

in a thread-safe fashion.4

On Parallelizing the Clifford Algebra Product for CLIFFORD 5

2.3 The parallel procedure cmulWpar for the Clifford product

We discuss briefly the code of cmulWpar

6 Rafał Abłamowicz and Bertfried Fauser

-- set up multitasking

-- continue function, add up results of ta sk processes

addUp:=proc(a,b) a+b end proc

On Parallelizing the Clifford Algebra Product for CLIFFORD 7

both lists are ‘small’ and are actually computed in their respective threads. Finally,

the Threads:-Task:-Start(...) routine initializes the threading mechanism and

starts producing the task in separate threads and also collects the results.

The number of tasks produced is also the number of threads Maple produces.

On a 4-core cpu one would like to have 4 threads only, all takin

8 Rafał Abłamowicz and Bertfried Fauser

10 Rafał Abłamowicz and Bertfried Fauser

We suspect that CLIFFORD could be faster at least by an overall factor of more

than 20-30, based on this current experience, by a generic rewrite using better data

structures and avoiding all the repetitious parsing and type checking where it can

be avoided, and using the recursive way to split (multi)linearity, etc. Optimizing

CLIFFORD and its related packages like Bigebra, Cliplus, Octonion, etc.

[3] is a priority whose urgency has been emphasized by this exercise in parallelizing

the Clifford product.

The results discussed here are accompanied by Maple worksheets posted on [4].

These well-documented worksheets contain further results and alternatives like us-

ing the inherently parallel procedures Add, Seq, Map of Maple or producing threads

directly. There we further discuss the efficient usage of Maple’s Threads package.

We are working to make all of CLIFFORD thread safe after we have succeeded par-

allelizing the more complex and complicated cmulRS and cmulNUM routines. While

cmulRS is based on a provable optimal algorithm, the above discussion still sheds

some light on efficiency of the implementations due to different data structures or

recursive computing models (saving memory usage). In that respect, this is a very

open area of research.

Acknowledgements Bertfried Fauser wants to thank Darin Ohashi from Maplesoft for his kind

help with and email discussions about Maple’s threading mechanism. Both authors thank referees

for their comments as they have helped us extend this work and

On Parallelizing the Clifford Algebra Product for CLIFFORD 11

l o c a l i,j; # <== needed!

assignment of j produces a warning i f not declared l o c a l

j:=x[1];

add(x[i],i=1..N);

end proc

14 Rafał Abłamowicz and Bertfried Fauser

6. : On the transposition anti-involution in real Clifford algebras III: the automorphism

