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Abstract We present different methods for symbolic computer algebracomputa-
tions in higher dimensional (�
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theorem states that there exists a basis forV such that the quadratic formQ is di-
agonal with entries� 1;0 in the real case (0 only whenQ is degenerate; just+ 1's
in the non-degenerate complex case). Under these isomorphisms, the real quadratic
space(Q;V) with a non-degenerateQ is isomorphic to a spaceRp;q
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(the graded tensor productˆ
 is de�ned below and we use equality for categorical
isomorphisms). Similarly we get for Clifford algebras

C̀ (V1 + V2;Q1 ? Q2) = C̀ (V1;Q1) ˆ
 C̀ (V2;Q2); (8)

and it is this decomposition which will be used below to compute in CLIFFORD
in dimensions� 9. For Clifford algebras with non-symmetric bilinear formssuch a
decomposition is in generalnot direct, see [18].

2.4 Tensor products of (graded) algebras

Let (A;mA) and(B;mB) beK
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In the Grassmann algebra case, splitting the spaceV = V1 + V2 with n basis vec-
torsei into two sets with, respectively,p (1 � i � p) andq (p < i � n) vectors, we
get the mapsei 7! ei ˆ
 1 (i � p) andej 7! 1 ˆ
 ej (p < j � n). In the CAS compu-
tations below we willstandardizethe indices, that is, we will reindexj 7! j � p so
thati 2 f 1; : : :; pg and j � p 2 f 1; : : :n� pg. The graded tensor product ensures that
we still have the desired anti-commutation relations

(ei ˆ
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ploys (graded) algebra isomorphisms described on the generators of the factor Clif-
ford algebras inside the ambient Clifford algebra. This leads to the well-known pe-
riodicity relations which are summarized in the following3.

Theorem 2.For real Clifford algebras we have the following periodicity theorems
and isomorphisms:
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Theorem 3 ([14], Theorem 5.8).With the notation as above, let V2 have dimen-
sion2k and letw be the volume element in C`(V2;Q2) with w2 = l 6= 0. There exists
a vector space isomorphism between the moduleC`(V1 � V2;Q1 ? Q2) and the mod-
ule C̀ (V1; 1

l Q1) 
 C̀ (V2;Q2) given on generators as(x; y) 7! x 
 w + 1 
 y, and
there is a graded algebra isomorphism

C̀ (V1 � V2;Q1 ? Q2) ' C̀ (V1;
1
l

Q1) 
 C̀ (V2;Q2): (17)

The involutions extend as( dx
 y) ' x̂ 
 ŷ andrev(x
 y) ' rev(x) 
 rev(y) if jxj �
0 mod 2even andrev(x
 y) ' rev(x) 
 rev(ŷ) otherwise. Then all periodicity iso-
morphisms in Theorem 2 are special cases of this one.4

To exemplify this, let(x; y) be any pair of generators withx 2 V1 andy 2 V2 which
upon the embeddingV1 � V2 ,! C̀ (V1 � V2;Q1 ? Q2) we write as the sumx+ y.
Then,

(x+ y)2 = x2 + ( xy+ yx) + y2 = ( Q1(x) + Q2(y))1 = ( Q1 ? Q2)(x; y) (18)

due to the orthogonality ofx and y. On the other hand, in the (ungraded) tensor
product algebra in the right-hand-side of (17) we �nd, as expected,

(x
 w + 1
 y)2

= ( x
 w)(x
 w) + ( x
 w)(1
 y) + ( 1
 y)(x 
 w) + ( 1
 y)(1
 y)

= x2 
 w
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(x1x2) 
 w2 + ( x1 ^ 1) 
 wy2 + ( 1^ x2) 
 y1w + ( 1^ 1) 
 (y1y2) =

(x1 ^ x2) 
 l 1+ x1 
 wy2 + x2 
 y1w + 1
 (y1 ^ y2): (21)

The isomorphism in (17) is given by the proceduresbas2Tbas (from left to right)
and its inverseTbas2bas (from right to left). In the worksheets [7] we show both
procedures as well as we verify the assertions regarding theinvolutions.

2.6 Spinor representations, Clifford valued matrix representations

A Clifford algebra is an abstract algebra, but we may want to realize it as a con-
crete matrix algebra. It is, however, well known that matrixrepresentations may
be very inef�cient for CAS purposes. The simplest representation is the (left) reg-
ular representation, sendinga 2 A 7! l a = mA(a; � ) 2 End(A), the left multipli-
cation operator bya. This representation is usually highly reducible. The small-
est faithful representations of a Clifford algebra are given by spinor representa-
tions.5 Algebraically, a spinor representation is given by aminimalleft ideal which
can be generated by left multiplication from aprimitive idempotentfi = f 2

i with
6 9fk; fl 6= 0 idempotents such thatfi = fk + fl and fk fl = fl fk = 0. The vector space
Si := C̀ p;q fi is aspinor space, and it carries a faithful irreducible representation of
C̀ p;q for simple algebras.6 However, whenC̀ p
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S1 = C̀ 1;1 f1 = spanRf f 1
1 := f1 =

1
2

(1+
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underlying a Clifford algebra using the GrassmannZ2-grading.9 That is, mapping
the generatorsei 7! � ei in both cases. From the property of the Grassmann func-
tor (7), by replacing (formally) ˆ :V 7! � V under the grade involution ˆ, we derive

^
(� V � W) =

^
(� V) ˆ


^
(� W):

This amounts to saying that ˆjV+W = ˆjV 
 ˆjW, and the same is true for the Clifford
functorC̀ . The grade involution on graded and ungraded tensor products of Clifford
algebras reads then:

ˆ : C̀ p;q ˆ
 C̀
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where revMat = revB is the reversion on Mat(2;C̀ p;q) �= C̀ p+ 1;q+ 1 �= C̀ p;q 
 C̀ 1;1
and revp;q is the reversion onC̀ p;q. For a general spinor basis, one gets

revB([X]) = revB([X]0 + [ X]1) = [ a][revB1(X)]0[a� 1] + [ revB1(X)]1 (32)

with an invertiblea satisfyingtp (a) = a. The code of all these grade and reversion
involutions is displayed in Appendix 5.1 and is further discussed in the worksheets
posted at [7].

3 Computing with CLIFFORDand Bigebra in tensor algebras

We provide examples of Maple code how to set up tensor products of Clifford alge-
bras inCLIFFORDandBigebra . For the usage of these packages see [1,5,6], the
help pages which come with the package, and the package website [4]. The Maple
worksheets with code for the described methods are posted at[7].

Loading the package using>with(Clifford);with(Bigebra); exposes the
exported functions. To set up a Clifford algebra, sayC̀ 2;2, one needs to de�ne the di-
mension>dim V:=2+2; and the bilinear form>B:=linalg[diag](1$2,-1$2); .10

Basis elementseI are written as strings, e.g.,e1we4 stands fore1 ^ e4; etc., whereas
Id stands for the identity of the Clifford algebra.Bigebra exports also the
(graded) tensor product&t , which is multilinear and associative. Then, a tensor
producte1;2 
 e1 reads&t(e1we2,e1) , and permutations of tensors are implemented
by maps>switch(&t(e1,e2),1) = &t(e2,e1) (the ungraded switch) or, in the
graded case,>gswitch(&t(e1,e2),1) = -&t(e2,e1) (the graded switch). The
extra indexi in either switch (here we have used1 in each) tells[g]switch to
swap the i-th and the (i+1)st elements. Again, you get help bytyping>?switch and
>?gswitch at the Maple prompt.

The Clifford productcmul by default implicitly uses the bilinear formB as in,
for example,>cmul(e1,e2)=e1we2+B[1,2] * Id . However, it can also useB or any
other Maple name explicitly as an optional argument, e.g.,>cmul[K](e1,e2) =
e1we2+K[1,2] * Id , allowing to compute in different Clifford algebras in the same
worksheet.

Let B, B1, B2 hold the bilinear forms11 for C̀ p+ r;q+ s;C̀ p;q and C̀ r;s, and let
bas2GTbas be the graded algebra isomorphism(16) given byeI 2 C̀ p;q 7! &t(eI,Id)
(I � f 1; : : :; p+ qg) andeJ 2 C̀ r;s 7! &t(Id,eJ) (J � f 1; : : :r + sg), then the proce-
durecmulGTensor implements the Clifford algebra product in thegradedtensor
product of Clifford algebras in the r.h.s. of (16) as explained in Section 2.4.

10 The default name of the bilinear form inCLIFFORDandBigebra is B, however other names
can also be used. So, when the bilinear formB is left unde�ned (unassigned), computations are
performed in a Clifford algebraC̀ (B) for an arbitrary bilinear formB
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cmulGTensor:=
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C̀ p+ k;q+ k ' C̀ p;q 
 C̀ 1;1 
 � � � 
 C̀ 1;1
| {z }

k factors

; (33)

or use the mod 8 periodicity.

4 Computations using matrix algebras over Clifford numbers

The isomorphism 6) from Theorem 2 was explicitly de�ned by Lounesto in [21,
Sect. 16.3]. We will use this matrix approach to perform computations inC̀ 8;2 '
Mat(2;C̀ 7;1) [11]. Let f e1; : : :; e8g be an orthonormal basis ofR7;1 generating the
Clifford algebraC̀ 7;1 such thate2

i = 1 for 1� i � 7, e2
8 = � 1, andeiej = � ejei for

� i; j � 8 andi 6= j. The following 2� 2 matrices (compare with (23))

Ei =
�

ei 0
0 � ei

�
for i = 1; : : :; 8; E9 =

�
0 1
1 0

�
; E10 =

�
0 � 1
1 0

�
(34)

anti-commute and generateC̀ 8;2:13 In order to effectively compute inC̀ 8;2



16 Rafa� Ab�amowicz and Bertfried Fauser



Using Periodicity Theorems 17

The Mat(2;C̀ p;q) case is different. Due to the choice of a spinor basis forC̀ 1;1,
the grade involution depends on this choice. Using the basisde�ned in Section 2.6
equation (23), we code the graded involution as

Listing 3 Mat(2;C̀ p;q) main involution

# Mgradeinv : grade involution on Mat(2,CL_p,q)
Mgradeinv := proc(x)

l i n a l g [matrix](2,2, [ g rade inv(x[1,1]),- g rade inv(x[1,2]),
- g rade inv(x[2,1]), g rade inv(x[2,2])]);

end proc:

This re�ects the fact that in this spinor basis the non zero diagonal terms (ei ) of
generators are odd, while the non zero off diagonal terms areeven (� 1) and need an
additional minus sign.

The reversion is more complicated as it involves swapping ofgenerators between
the two factors of the product representations or involves the chosen spinor basis.
The graded tensor case just needs an additional sign due to the swapping of the two
factors of the product:

Listing 4 Graded reversion

# GTreversion : r e v e r s i o n involution on CL_p,q (x) CL_r,s
# !! works for general bilinear forms B1 & B2 !!
GTreversion:= proc(x,B1,B2) l o c a l f2;

f2:=(a,b)->&t( r e v e r s i o n(b,B1), r e v e r s i o n(a,B2)); # note order
# of a,b

e v a l( subs(`&t`=f2, gswi tch
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The reversion in the Mat(2;C̀ p;q) case depends on the basis chosen in (23). It swaps
the diagonal entries and has to apply the grade involution tothe second column.18

Listing 6 Mat(2;C̀ p;q) reversion

# Mreversion : r e v e r s i o n on Mat(2,CL_p,q)
# NOTE: depends on spinor basis for CL_1,1
Mreversion := proc(x,B)

l i n a l g [matrix](2,2,
[ g rade inv( r e v e r s i o n(x[2,2],B)), g rade inv( r e v e r s i o n(x[1,2],B)),

g rade inv( r e v e r s i o n(x[2,1],B)), g rade inv( r e v e r s i o n(x[1,1],B))]);
end proc:
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