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1. Introduction

Some twenty years ago, late Professor Pertti Lounesto togéier with his colleagues
at Helsinki University of Technology developedCLICAL a rst semi-symbolic \Clif-
ford algebra calculator”. [32] Along with it, Pertti brough t to the world of Cli ord
algebraists a concept obxperimental mathematics algorithmic understanding, and
counter examples
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In CLIFFOREhese basis monomials are written as string$1d, el, ..., €9, elwe2,
elwe3, ..., elwe2we3, ...g although they can be aliased tofld, el, ..., e9,
el?2, el3, ..., el23, ... g to shorten inpui; Here elwe2is a string that denotes

e1 N e, and Id denotes the identity 1 in ~ V: However, CLIFFORRan also use
one-character long symbolic indices as iriwej which stands fore; * g;:
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eiwejwek+ Kjk ei  Kik ej + Kij ek

The form B can be numeric or symbolic. For example, when
> B:=matrix(2,2,[1,a,a,1]);

then the Grassmann basis forC*(B) or  V will be:
> cbas:=cbasis(2);

cbhas:=[Id; el; e2; el2]

while the Cli ord multiplication table of the basis Grassma nn monomials will look
as follows:

> MultTable:=matrix(4,4,(i,j)->cmul(cbas[i],cbas[j])) ;

2 3
Id el e2 el2
el Id el2+ ald e2 ael
MultTable :=
e2 el2+ ald Id ae2 el

el2 ael e2 el ae2 ( 1+a?ld

Irrespective of the bilinear form chosen, the Grassmann muiplication table will
always remain as:
> wedgetable:=matrix(4,4,(i,j)->wedge(cbas]i],cbas][j] ));
2 3
Id el e2 el2

el 0 el2 O
wedgetable:=
e2 el2 O 0

el? 0 0 0

Let B = g+ F wheregand F
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Then, the Cli ord multiplication table of the basis monomia Is in C*(B) will be as

follows:
> MultTable:=matrix(4,4,(i,j)->cmul(cbas[i],cbas[j])) ;
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algebrasC'(Q); 1 n = p+ g 9; and for any signature (p; Q) has been pre-
computed [3] and can be retrieved fromCLIFFORDQvith a procedure matKrepr:
For example, 1-vectorse; and e, in C', have the following spinor representation
in the basisff; e2&cfgof S = C',f:?
> matKrepr([2,0]);
2 3 2 3
1 0 0 1
[e]_ =4 5 e2= 4 5]
0 1 1 0
In another example, Cli ord algebra C3 of R3 is isomorphic with Mat(2 ; C):
> B:=linalg[diag](1,1,1):clidata([3,0]);
[complex; 2; simple; %Id + %el; [Id; e2; e3; e23]; [Id; e23]; [Id; e2]]
and its spinor representation is given in terms of Pauli matices:
> matKrepr([3,0]);
2 3 2 3 2 3

[e1=41 O5.6024% 15.3-4 0 e235]
0o 1

1 0 e23 0

Notice that F = spanfld;e23g (e23 = e2we3



8 Rafal Ablamowicz

‘M1 &m M1’ = evalm(M1 &m M1),"M2 &cm M2' = evalm(M2 &cm M2),

‘M3 &m M3' = evalm(M3 &cm M3);

‘el & el” = el &c el,’e2 &c e2” = e2 &c e2,’e3 &c e3" = e3 &c e3;
2 3 2 3 2

vV V Vv

1 0 1 0
M1 &cm M1 = 4 S:M2 &cm M2 = 4 5:M3 &cm M3 = 4
0 1 0 1 0

el&cel=1Id;e2&ce2=1d;e3 &ce3=1Id

The procedure matKrepr gives the linear isomorphismC’ ([(()3.4
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Cli ord algebras in higher dimensions. The BIGEBRAackage is described in [10].
For more information about any CLIFFORDr BIGEBRArocedure, type ?Clifford
or ?Bigebra
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and the second recursion of the process gives now

= B
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The procedure cmulRSis encoded a non-recursive Rota-Stein cli ordization.
See [10, 20, 22,24, 40] anBIGEBRAelp pages for additional reference&. The clif-
fordization process is based on the Hopf algebra theory. Th&€li ord product is
obtained from the Grassmann wedge product and its Grassmanrto-product as
shown by the following tangle:

&c = (4)

Here” is the Grassmann exterior wedge product and ~ is the Grassmann exterior
co-product which is obtained from the wedge product by a catgorial duality: To

every algebra over a linear spacé@ with a product we nd a co-algebra with a co-
product over the same space by reversing all arrows in all avimatic commutative
diagrams. Note that the co-product splits each input “facta
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1 (:)e
C(B)» C(B) C(B)x» C(B)n
Jg B
(1) F
C'(B)~ C(B)r

Diagram 2. Contraction w.r.t. wedge and dotted wedge.

true
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e Coe
C(g~ C(9~ C@. C(9~
cmullg] cmul[B]
(1) F
C(g)~ C (9

Diagram 3. Cli ord multiplications cmul[g] and cmul[B] w.r.t.
dotted and undotted basis.

> uv:=cmulg(u,v): #Clifford product w.r.t. g in Cl(g) in wedg e basis
Now, we convertu and v to ug and vg;
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reversion [B](:::)
C'(B)~ C(B)r

reversion [g](::?)

C'(B)»

Diagram 6. Relation betweenreversion[g] and reversion[B]
and the basis transformation (. ::)2r:

We illustrate how the various reversions are related in the fllowing commutative
diagram:

The reader should note that the map, depicted by the diagonalarrow in
Diagram 6, involves a change of basis induced by the antisymatric bilinear form
2F and not F: The factor 2 is crucial and appears due to an asymmetry betwee
the undotted and dotted bases. This suggests to introduce aygnmetrically related
triple of bases w.r.t. %F; F Oand %F: In such a setting, F (resp. F) connects
the two dotted bases induced by %F:

Observe in the pre-last display above that only whenBj., = Bgy.1; the re-
sult e; ™ e; known from the theory of classical Cli ord algebras is obtained.
Likewise,
> cbas:=cbasis(3);

cbas:=[Id; el; e2; e3; elwez elwe3 e2we3 elwe2we3d

> map(reversion,chas,B);

[Id; el; e2; e3; elwe2 2Fi.,ld; elwe3 2Fi.3ld; e2we3 2F..3ld;

2Fz.3el+2F;.3e2 2Fi1.2e3 elwe2wed
If instead of B we use a symmetric matrixg = g'
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7. Spinor Representation of C’(Q) in Minimal Left Ideals

See [3] for a complete treatment of symbolic computation ofginor representations
of simple and semisimple Cli ord algebras. Here we provide @me basic facts and
a few examples. We will use a procedurspinorKrepr from CLIFFORD

Procedure spinorKrepr nds a matrix spinor representation of any Cli ord
polynomial in a minimal left ideal S
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> dim:=3:B:=linalg[diag](1,1,1):#define the bilinear for m B for CI(3,0)
> clibasis:=cbasis(dim): #compute Clifford basis for CI(3, 0)
> data:=clidata(B); #retrieve and display data about CI(3,0 )
. Id el
data := [ complex; 2; simple; > + 7; [Id; e2; e3; e23]; [Id; e23]; [Id; e2]]
> f:=data[4]: #assign pre-stored idempotent to f or use your o wn here
> sbasis:=minimalideal(clibasis,f,'left"):#compute a re al basis in CI(3,0)f

> Kbasis:=Kfield(sbasis,f); #compute a basis for the field K

el e23 el23

Kbasis := [[ % + > + T]; [Id; e23]]

> SBgens:=sbasis[2]: #generators for a real basis in S
> FBgens:=Kbasis[2]; #generators for K are two since K=C

FBgens:=[Id; e23]

> K_basis:=spinorKbasis(SBgens,f,FBgens,'left');

e ld el e2 el2 .. .
K _basis:=[ > + > 5 > 1; [Id; e2]; left]
Here are the matrices representing 1l-vector basis monomiglof C 3.o: Matrices
sigma[1]; sigma[2] and sigma[3] are the well-known Pauli matrices with entries in
the eld K:

> sigmal[l],sigma[2],sigma[3]:=

> op(map(spinorKrepr,[el,e2,e3],K_basis[1],FBgens,'le ft");
2 3 2 3 2 3
1 0 01 0 e23
12 3=4 5.4 5.4 5

0 1 1 0 e23 0
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> s:=f1 &c psi[l] + f2 &c psi[2];#remember that S is a right K-ve ctor space
_ald  be23 ael bel23 cel2 del3 ce2  de3
+ + + + —=

2 2 2 2 2 2 2 2
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> B:=diag(1,1,1); #define B for CI(3,0)
2 3

o-f L)

> dim:=coldim(B):eval(makealiases(dim)):
> data:=clidata(B); #retrieve and display data about CI(B)

1 0
0 1
0 0

data := [ complex; 2; simple; % + %; [Id; e2; e3; e23]; [Id; e23]; [Id; e2]]

> f:=data[4]: #assign pre-stored idempotent to f or use your o wn here
> for i from 1 to nops(data[7]) do f|li:=data[7][i] &c f od;
_ld el ._ €2 el2
fl:= 2+ > f2 .= > -

> Kbasis:=data[6]; #here K = C
Kbasis :=[1d; e23]

Let's de ne arbitrary (complex) spinor coe cients psil ;psi2 ; phil and phi2 for
two spinors and in S= C'zof ' C2: Notice, that these coe cients belong to a
subalgebraK of C 3.0 spanned byf 1; e;3g that is isomorphic to C sincee3; = 1.
Recall also that the left minimal ideal S = C (Q)f is aright K-module. That's
why the 'complex’ coe cients must be written on the right of t he spinor basis
elementsfl and f2 in S:

> psil:=psill * Id + psil2 * e23;psi2:=psi2l * Id + psi22 * e23;

1:= 11Ild + 12e23; 2:= 21ld + 22e23
> phil:=phill * Id + phil2 * e23;phi2:=phi21 * Id + phi22 * e23;
1:= 11id + 12e23; 2:= 21ld + 22e23

Thus, =f; 1+f, and = f; 1+ f, » whichis shown in Maple with a help
of an unevaluated Cli ord product climul as follows:
> psi:='fl &c psil' + 'f2 &c psi2';phi:='fl &c phil' + 'f2 &c phi 24

:=climul( f1; 1) +climul( f2; 2); =climul( f1; 1) +climul( f2; 2)

Now, we compute . (; ) while we store the purespinoru under the name
purespinorl : Notice, that . is invariant under the unitary group U(2):
> beta_plus(psi,phi,f,'purespinorl’);purespinorl;
(22 22+ 21 21+ 11 11+ 12 12)Id
+( 21 22 12 11+ 11 12 22 21)e23

Id
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Observe that . (;
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We will show how to nd continuous families of idempotents in a Cli ord al-
gebraC’(Q) by nding a general solution to the equation f2 = f with a procedure
clisolve : As low dimensional examples, we will use€C ».¢; C'1.1 and C’3.¢:

Example 4. Families of idempotents in C
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> fi=add(x[i]*bas[i],i=1..2*dim_V);

f = x1ld + xpel+ xze2+ x4el12

> sol:=map(allvalues,clisolve(cmul(f,f)-f,f)):sol_rea l:=remove(has,sol,l);
sol_real :=[0; Id; % + %p 1 4x42e2+ x4€l12; % %p 1 4x42e2+ xzel2;
% + %p 1+4x32 4x42el+ xze2+ xzel2;
id1p

> 3 1+4x32 4x4%2el+ xze2+ xq4el2]

> map(x -> is(simplify(cmul(x,x)=x)),sol_real);
[true; true; true; true; true; true]

Thus, like in the Euclidean case, we nd that

1 1P
é é 1+4X32 4X42 €1+ Xz€r+ Xg€1" €5 (17)

gives a two parameter family of idempotents provided 1 +4x3?> 4x42 0: Like
in the Euclidean case we nd that the idempotents in the pair (17) do not add
up to 1 and do not mutually annihilate unless x3 = x4 = 0: In that case we nd
graded idempotents:  le; " ey

In the anti-Euclidean signature (0; 2) we only nd, as expected, trivial idem-
potents in Cp., ' H: In higher dimensions, for example inC’3.0; one also nds
families parameterized by more than two parameters.

10. Vahlen Matrices

For the background material on Vahlen matrices and conformétransformations,
see [15, 31, 33,34, 38]. ProceduiigVahlenmatrix determines if a given 2 2 Clif-
ford matrix V 2 Mat(2;C (Q)) is a Vahlen matrix and it returns true or false
accordingly. Any matrix with entries in a Cli ord algebra is of “type/climatrix

A Vahlen matrix isa2 2 matrix V = 28 with entries in a Cli ord algebra
C’p,q such that the following conditions are met:

1. a; b; c; dare products of 1-vectors,
2. The pseudo-determinant® of V computed asad be equals +1 or 1;
3. ab; bd; d&; and ea are all 1-vectors!’

Condition (i) above implies that a; b; c;and d are elements of theLipschitz
group Lpq of C'pq: Recall [35] that this group is de ned as follows:

Lpgq = fS2 Cpqjxxs 12 RPY;x 2 RPAg:

16|n CLIFFORI is computed with a prop0 d541R
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Next, we consider a Vahlen matrix T that gives a translation:
> b:=el+2*e3; #vector in R™(3,1)

> T:=linalg[matrix](2,2,[1,b,0,1]);

> 'isVahlenmatrix(T)'=isVahlenmatrix(T);

2 3
1 el+2e3
bi=el+2e3;, T:=4 5
0 1
Y%sVahlenmatrix (T)°= true
A Vahlen matrix Dil that gives a dilation transformation:
> delta:=1/4: #a positive parameter
> Dil:=linalg[matrix](2,2,[sqrt(delta),0,0,1/sqrt(del ta))]);
> 'isVahlenmatrix(Dil)'=isVahlenmatrix(Dil);
2 1 o 3
pil =% 2 £

0 2

Y%sVahlenmatrix (Dil )°= true

Finally, a Vahlen matrix Tv that gives a transversion transformation:
> c:=2*el-e3; #a vector in R*(3,1)
> Tv:=linalg[matrix](2,2,[1,0,c,1]);
> 'isVahlenmatrix(Tv)'=isVahlenmatrix(Tv);
2 3

1 0
ci=2el e3 Tvi=4 5
2el e3 1

%sVahlenmatrix (Tv)°= true

If we now take a product of these four matrices above?® we will obtain an element
conf of the conformal group in R%1:
> conf:=R &m T &cm Dil &m Tv;

2 3
e_;Z +10e23 4el23 2e2
conf := 2
2e123 4e2 2el2

Since in the product above each matrix appeared exactly ongehe diagonal entries
of conf must be invertible. We nd the inverses of each element withcinv :
> cinv(conf[1,1]); #inverse of conf[1,1]

2el2 40e23
401 401

18 g cnmdenotes a matrix multiplicationin -~ CLIFFORD
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> cinv(conf[2,2]); #inverse of conf[2,2]

el?

2
However, there are elements in the conformal group odR*! whose Vahlen matrices
do not have invertible elements at all. The following exampk of such matrix is
due to Johannes Maks. [38] MatrixW de ned below represents an element in the
identity component of the conformal group of R3%:

> W:=evalm((1/2)*linalg[matrix](2,2,[1-e14,-e1+e4,el+ e4,1+el4)));
1oeld el ed’
a2 2 2 2 é

el e4 1 el4d

— 4+ — 4+

2 2 2 2
Notice that the diagonal elements ofW are non-trivial idempotents in C"3.; hence
as such they are not invertible:

> type(W[1,1],idempotent); #element (1,1) of W is an idempot ent

true

> type(W[2,2],idempotent); #element (2,2) of W is an idempot ent
true

Notice also that the o -diagonal elements of W are isotropic vectors inR3*; hence
they are also non-invertible. In C’ 3.1 such vectors have zero squares:
> cmul(W[1,2],W[1,2]),cmul(W[2,1],W[2,1]);

0;0

Let's now verify that matrix W de ned above is a Vahlen matrix:
> 'isVahlenmatrix(W)'=isVahlenmatrix(W);

true

However, matrix W represents an element of the identity component of the con-
formal group in R%? since its pseudo-determinant is 1, and since it can be writte
as a product of a transversion, a translation, and a transvesion. Thus, in an-
other words, W is not a product of just one rotation, one translation, one dilation,
and/or one transversion:

> Tv:=linalg[matrix](2,2,[1,0,(e1l+e4)/2,1]);

2 3
1 0
vi=4 o4 e1 5
—+ = 1
2 2
> T:=linalg[matrix](2,2,[1,(-e1+e4)/2,0,1));
2, et el
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> Tv &m T &cm Tv = evaim(W); # W = Tv &m T &cm Tv

“1 et er e’ Y1 oeld et oen’
) 2 22_ ) 2 22
e4d el 1 el4d e4d el 1 el4d
—+ = 4+ = —+ = T+ =
2 2 2 2 2 2 2

> pseudodet(W); #computing pseudo-determinant of W

Id

Thus, the above computation con rms that W = Tv&cmT &cm Tv and that the
pseudo-determinant of W is 1:

There is another variation of Johannes Maks' example of a Vaken matrix
W without any invertible entries. Matrix W represents an element in the identity
component of the conformal group ofR31:
> W:=evalm((1/2)*linalg[matrix](2,2,[1-e24,-e2+e4,e2+ e4,1+e24)));

“1 ez e, e’
82 2 2 22
' e2 ed4 1 e24

=y = + =

2 2 2 2

Notice that the diagonal elements ofW are non-trivial idempotents in C’3.1; hence
they are not invertible in C’3.1:

> type(W[1,1],idempotent); #element (1,1) of W is an idempot ent

> type(W[2,2],idempotent); #element (2,2) of W is an idempot ent

true ;true

Notice also that the o -diagonal elements of W are isotropic vectors inR3*; hence
they are also non-invertible:
> cmul(W[1,2],W[1,2]),cmul(W[2,1],W[2,1]);

0;0

Finally, we verify that W is a Vahlen matrix:
> 'isVahlenmatrix(W)'=isVahlenmatrix(W);

%sVahlenmatrix (W)° = true

However, W is an element of the identity component of the conformal grop in
R3! since its pseudo-determinant is 1and since it can be written as a product of
a transversion, a translation, and a transversion. As befoe, W is not a product of
just one rotation, one translation, one dilation, and/or one transversion:

> Tv:=linalg[matrix](2,2,[1,0,(e2+e4)/2,1]);

Tv =4 5
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> T:=linalg[matrix](2,2,[1,(-e2+e4)/2,0,1));

33
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3

A:4235

1 2

SinceA 2 Mat(2; R); we need to nd (p; ) such that C'p,,q ' Mat(2; R): Procedure
all sigs builtinto CLIFFORMisplays two possible choices for the signaturep( q)
such thatp+ g=2; K' R and C 4 is a simple algebra:

> all_sigs(2..2,real,simple);

[[1; 1]; [2; 0]]

Thus, we can pick either C'1.; or C ,.0: Our choice isC,.o: We de ne B as the
2 2 identity matrix and use CLIFFORB procedureclidata to display information
about C*,.¢:

>
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We are in position now to compute matricesM; M,; M3; M4 representing each of
the four basis elementsf 1; e;; €; €129 of C .0 in the basisff;f,g:%?

> for i to nops(clibas) do M[i]:=subs(ld=1,matKrepr(clibas [)) end do:

We will use a new procedurephi which realizes the isomorphism from Mat(2 ; R)
to C'2.0: This way we can nd the image p = ' (A) in C, of any real 2 2
matrix A: Knowing image' (M;) of each matrix M;; i = 1;:::;4; in terms of some
Cli ord polynomial in C’2.
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In order to nd eigenvalues and eigenvectors ofAT A; we will use Maple's
procedureeigenvects modi ed by our own sorting via a new procedure assignL :
The latter displays a list containing two lists: one has the dgenvalues while the
second has the eigenvector& In the following, we assign the eigenvalues oAT A

to
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Since later we will need images of/ and VT under' in C ,.o; we compute them
now and store them under the variablespV and pVt respectively.

> pV:=phi(V,M); #finding image of V in CI(2,0)

> pVt:=phi(t(V),M): #finding image of t(V) in CI(2,0)

pVv =
1. P~ 1. _.P- 1 1 P 1 _.p- 1
L 01"5 o2 "5+ Toe)id 4 (=%l 5 =2 5+ ~%2)el
( 55% 20 "° g 02)ld +(55% 20 "° g 2)e
1 P~ 1_.P- 1 1 P 1 _.pP- 1
+( —0 + — 0 + =0 + — 0 + — 0 + =0
(55%2 5+ Zc%L 5+ So%l)e2+( %2 5+ o%1 5+ Z%1)el2

P —p—
%1 = b 10 2 5
%2:= 10+2 5 _ o _ _
The fact that V is orthogonal can be easily veri ed in the matrix language; n
C,.0 it can be done as follows:
> simplify(cmul(pVt,pV));

l

Id

We repeat the above steps and apply them toAA T : In the process, we will nd its
eigenvectorsus; u,: We must make sure thatAv; = ;u; where ;= ;i=1;2
This will require extra checking and possibly rede ning of the u's.
> AAT:=evalm(A &* transpose(A)); #computing AAT

2 3

13 8
AAT =4 5
8 5

The image of AAT under' in C,.o we denote asppT:
> ppT:=phi(AAT,M); #finding image of AAT in CI(2,0)

ppT :=91d +4el+8e2

In this case, the minimal polynomial of ppT and the characteristic polynomial of
AAT are, of course, the same.
> pol2:=charpoly(AAT lambda); #characteristic polynomia | of AAT
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> pU:=phi(U,M);#finding image of U in CI(2,0)
> pUt:=phi(t(U),M):#finding image of t(U) in ClI(2,0)

1 p- 1 1 p- 1 p- 1 1 p-
=( =09 —0 — 0 +( —0 + =0 + — 0
puU (20/01 5 8@2 4042 5)1d (20/01 5 8@2 4042 5)el
1 p- 1 1 p- 1 p- 1 1 p-
+( —0 + =0 0 +( —0 ) + 0,
; (20/02 5 8@1 4041 5)e2 (20/02 5 8@1 4OA)1 5)el2
%1::p10+2'§
%2:= 10 2'5

The fact that U is an orthogonal matrix can be easily now checked both in the
matrix language and in the Cli ord language:
> radsimplify(evalm(t(U) &* U));#U is an orthogonal matrix

2 3

> simplify(pUt &c pU);

Finally, we de ne matrix using a procedure makediag Recall from [42] that
has the same dimensions as the original matrix A and that T ; T are the
diagonal forms of ATA and AAT respectively. In this example matrices T and
T are the same since is a square diagonal matrix. Normally these matrices
are di erent although their nonzero \diagonal” entries are the same. Therefore we
have

ATA:V T VT. AAT:U TUT. - 1 0
i) i) O 2 i)
(21)
T - T = i 02
0 2
Matrices ; T and T we assign to Maple variablesSigma STSand SSTre-

spectively:
> Sigma:=makediag(m,n,[seq(sigma.i,i=1..N)]);
> STS,SST:=evalm(t(Sigma) &* Sigma),evalm(Sigma &* t(Sigm a));

2 3
P
- 4 5+2 p_O 5
0 5 2
2 o , 32 5 , 3
STS: SST = 4 ( 5+2) IC)_o 5.4 (5+2) IC)_o 5
0 (5 2?2 0 (5 2?2

The corresponding images () ;' ( T)and ' ( T)and C . will be assigned
to the Maple variables pSigmg pSTSand pSSTrespectively:
> pSigma,pSTS,pSST:=phi(Sigma,M),phi(STS,M,FBgens),ph i(SST,M);

pSigma; pSTS; pSST := P51d +2 el; 9Id +4 IOEel; o1d +4 " 5e1
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We should be able to verify inC 5. the following two factorizations of AAT and
ATA:
ATA = v T VT (22)
AAT u Tuf (23)

like this:

>
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> sol:=remove(has,map(allvalues,clisolve(eigeneq,[lam bda,x1,x2])),
> lambda=lambda);

sol
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X <- cat(e,L[-1])
pl <- substring(al,l..(3*N-4))
p2 <- procnamgXx,a2,B)
S <- clibilinear(p1,p2, procnameB)
-add((-1)"\(i)*coB*nameBI[L[-i],L[-1]]*
procnamegmakeclibasmon(subs(L[-i]=NULL,L[1..-2])),a2,B),i=2 ..N)
return reorder(simplify(S))
end cmulNUM

Appendix B. Appendix: Code of cmulRS

Here is a pseudocode of the proceduremulRSbased on the combinatorial process
of Rota-Stein:

cmulRS(x,y,B) [x, y two Grassmann monomials, B - bilinear form]
begin
Istx <- list of indices from x
Isty <- list of indices from y
NX <- length of Istx
NY <- length of Isty
funx <- function maps integers 1..NX onto elements of Istx keeping t heir order
funy <- function maps integers 1..NY onto elements of Isty keeping t heir order
(this is to calculate with arbitrary indices and to compute n ecessary signs)
psetx <- power set of 1..NX (actually a list in a certain order)
(the i-th and (2"NX+1-i)-th element are disjoint adding upt o the setf1..NXg)
psety <- power set of 1..NY (actually a list in a certain order)
(the i-th and (2"NY+1-i)-th element are disjoint adding upt o the setf1..NYQ)
(for faster computation we sort this power sets by grade)
(we compute the sign for any term in the power set)
psetx <- sort psetx by grade
psety <- sort psety by grade
pSgnx <- sum_(i in psetx) (-1)*sum _(j in psetx[i]) (psetx[i][j]-j)
pSgny <- sum.(i in psety) (-1)"*sum _(j in psety[i]) (psety[i][il-})
(we need a subroutine for cup tangle computing the bilinear f orm cup(x,y,B))
begin cup
if [x| <> |y|] then return O end if
if [x| = 0 then return 1 end if
if [Xx| = 1 then return B[x[1],y[1]] end if
return sum _(j in 1.. |x|
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pos2 <- 0
for i from 0 to min(N2,max _grade-j)
(iterate over all i-vectors of psety not exceeding max _grade while others are zero)
begin

F2 <- N2l/((N2-i)*i) (number of terms (N2 over i))
for n from 1 to F1 (for all j-vectors)
begin
for m from 1 to F2 (for all i-vectors)
begin
res <- res + pSgnx[posl+n]*pSgny[pos2+m]*
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