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Abstract. It is known that Clifford (geometric) algebra offers a geometric
interpretation for square roots of −1 in the form of blades that square to minus
1. This extends to a geometric interpretation of quaternions as the side face
bivectors of a unit cube. Research has been done [1] on the biquaternion roots
of −1, abandoning the restriction to blades. Biquaternions are isomorphic
to the Clifford (geometric) algebra C`3 of R3. All these roots of −1 find
immediate applications in the construction of new types of geometric Clifford
Fourier transformations.

We now extend this research to general algebras C`p,q. We fully derive
the geometric roots of −1 for the Clifford (geometric) algebras with p+q ≤ 4.
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1. Introduction

The British mathematician W.K. Clifford created his geometric algebras1 in 1878
inspired by the works of Hamilton on quaternions and by Grassmann’s exterior
algebra. Grassmann invented the antisymmetric outer product of vectors, that
regards the oriented parallelogram area spanned by two vectors as a new type of
number, commonly called bivector. The bivector represents its own plane, because
outer products with vectors in the plane vanish. In three dimensions the outer

1In his original publication [2] Clifford first used the term geometric algebras. Subsequently in
mathematics the new term Clifford algebras
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product of three linearly independent vectors defines a so-called trivector with
the magnitude of the volume of the parallelepiped spanned by the vectors. Its
orientation (sign) depends on the handedness of the three vectors.

In the Clifford algebra [16] of R3 the three bivector side faces of a unit cube
{~e1~e2, ~e2~e3, ~e3~e1} oriented along the three coordinate directions {~e1, ~e2, ~e3} cor-
respond to the three quaternion units i, j, and k. Like quaternions, these three
bivectors square to minus one and generate the rotations in their respective planes.

Beyond that Clifford algebra allows to extend complex numbers to higher di-
mensions [3, 4] and systematically generalize our knowledge of complex numbers,
holomorphic functions and quaternions. It has found rich applications in symbolic
computation, physics, robotics, computer graphics, etc. [5, 14,15,18]. Since bivec-
tors and trivectors in the Clifford algebras of Euclidean vector spaces square to
minus one, we can use them to create new geometric kernels for Fourier transfor-
mations. This leads to a large variety of new Fourier transformations, which all
deserve to be studied in their own right [5–13,26,28,29].

We will treat both Euclidean (positive definite metric) and non-Euclidean (in-
definite metric) vector spaces. We know from Einstein’s special theory of relativity
that non-Euclidean vector spaces are of fundamental importance in nature [17].
Therefore this paper is about finding square roots of −1 in a non-degenerate
Clifford algebra C`p,q.

2. Clifford (geometric) algebras

The associative geometric product of two vectors ~a,~b ∈ Rp,q, p+q = n is defined as
the sum of their symmetric inner product (scalar) and their antisymmetric outer
product (bivector)

~a~b = ~a ·~b + ~a ∧~b. (1)

We define [20] a real Clifford algebra C`p,q as the linear space of all elements gen-
erated by the associative (and distributive) bilinear geometric product of vectors
of an inner product vector space Rp,q, p+q = n over the field of reals R. A Clifford
algebra includes the field of reals R and the vector space Rp,q as grade zero and
grade one elements, respectively.

Clifford algebras in one, two and three dimensions have the following basis
blades of grade 0 (scalars), grade 1 (vectors), grade 2 (bivectors) and grade 3
(trivectors)

{1, ~e1, ~e2, ~e3, e23, e31, e12, e123}, (2)
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where we use abbreviations e12 = ~e1~e2, e23 = ~e2~e3, e31 = ~e3~e1, e123 = ~e1~e2~e3.
Every multivector can be expanded in terms of these basis blades with real coef-
ficients. We give examples for M ∈ C`p,q, n = p + q = 1, 2, 3:

M = α + β~e1, (3)

M ′ = α + b1~e1 + b2~e2 + βe12, (4)

M ′′ = α + b1~e1 + b2~e2 + b3~e3 + c1e23 + c2e31 + c3e12 + βe123. (5)

The general notation for the quadratic form of basis vectors in Rp,q is:

~e 2
k = εk =

{
+1 for 1 ≤ k ≤ p,
−1 for p + 1 ≤ k ≤ p + q = n

. (6)

We therefore always have ~e 4
k = ε2

k = 1, and we abbreviate C`p = C`p,0. We follow
the convention that inner and outer products have priority over the geometric
product, which saves writing a number of brackets. Therefore, ~a ·~b~c equals (~a ·~b )~c
and not ~a · (~b~c), etc.

We will frequently use the following basic formulas of Clifford algebra in the
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Two blades Ar, Bs ∈ C`p,q are called orthogonal iff their inner product is zero

Ar ⊥ Bs ⇐⇒ Ar ·Bs = 0. (13)

With (11) follows that for r ≤ s

Ar ⊥ Bs ⇐⇒ Ar ∧ (BsIn) = 0 ⇐⇒ Ar ∧ B̃s = 0, (14)

where B̃s = BsI−1
n is the dual of Bs, with I−1

n = ±In. Likewise (12) shows that
for r + s ≤ n, r, s > 0

Ar ⊥ B̃s ⇐⇒ Ar ∧Bs = 0. (15)

Example 1. Let ~b, c ∈ C`p,q, p + q = 3 be a vector ~b and a bivector c with vanishing
outer product. Then by (15) the dual vector ~c = c̃ is always perpendicular to ~b
independent of the signature of the underlying vector space Rp,q, p + q = 3,

~b ∧ c = 0 ⇐⇒ ~b · ~c = 0 ⇐⇒ ~b ⊥ ~c. (16)

3. Geometric multivector square roots of −1

Definition 3.1 (Geometric root of −1). A geometric multivector square root (geo-
metric root) of −1 is a multivector A ∈ C`p,q with

A2 = AA = −1. (17)

An immediate application of this definition is the generalization of the famous
Euler formula to geometric roots A

eϕA = cos ϕ + A sin ϕ. (18)

For example, Lounesto considers e.g. cos ϕ + e12 sin ϕ in C`2 in [20] on page 29.

Theorem 3.2. Every multivector square root A of −1 is subject to n+1 = p+ q +1
grade-wise constraints:

A2 = 〈AA〉 = −1, (19)

and

〈AA〉k = 0, 1 ≤ k ≤ n, (20)

where 〈AA〉k denotes the k-th vector part of AA, and 〈AA〉 = 〈AA〉0.

We point out that 〈AA〉 is identical to the scalar product A ∗A of [3]. In the
following we call the scalar equation (19) the root equation of C`p,q and (20) the
constraints. Depending on the value of k, each k-vector constraint represents

(
n
k

)
scalar equations. We will sometimes conveniently split up a k-vector constraint
equation and still call the resulting partial equations constraints.
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4. Case n = 1

We have two algebras C`1 and C`0,1. There is only one basis vector ~e1 with square
~e2
1 = ε1. The two Clifford algebras are two dimensional with general elements

(multivectors)
α + β~e1, α, β ∈ R. (21)

The square of such a multivector is

(α + β~e1)2 = α2 + ε1β2 + 2αβ~e1 = −1, (22)

which has the scalar part (root equation)

α2 + ε1β2 = −1, (23)

and the vector part (constraint)

2αβ~e1 = 0. (24)
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and the bivector part
2αβe12 = 0. (33)

5.1. Case n = 2, α = 0

Equations (32) and (33) are now always fulfilled by any ~b and β. From (31) it
follows that

~b2 − β2ε1ε2 = b2
1ε1 + b2

2ε2 − β2ε1ε2 = −1. (34)

Multiplying each side of (24) by ε1ε2 gives the following root equation:

β2 = b2
1ε2 + b2

2ε1 + ε1ε2 =

 b2
1 + b2

2 + 1 for C`2,
−b2

1 + b2
2 − 1 for C`1,1,

−b2
1 − b2

2 + 1 for C`0,2.
(35)

In C`2 this includes, for b1 = b2 = 0, the solution A = ±e12, which also appears
in [20] on page 29.

5.2. Case n = 2, α 6= 0
If α 6= 0, then, according to (32) and (33), we have

~b = 0 and β = 0. (36)

Inserting this in (31) gives

α2 = −1, α ∈ R \ {0}, (37)

which has no solution. Therefore, the root equation (35) describes already all
possible solutions.

6. Case n = 3

We have four algebras C`3, C`2,1, C`1,2, and C`0,3 with a non-trivial center spanned
by the identity element 1 and the unit pseudoscalar e123. There are three basis
vectors ~ek, k ∈ {1, 2, 3}, with squares ~e2

k = εk. The four Clifford algebras are eight
dimensional with general elements

α +~b + c + βe123, α, β ∈ R, ~b = b1~e1 + b2~e2 + b3~e3 ∈ Rp,q, p + q = 3, (38)

with

c = c1e23 + c2e31 + c3e12 ∈
2∧

Rp,q, c1, c2, c3 ∈ R. (39)

Setting the square of such a multivector to −1 gives

(α +~b + c

+
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Grade-wise this results in the following set of constraints: For the scalar part (root
equation)

α2 +~b2
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7. Case n = 4

We have five central algebras C`4, C`3,1, C`2,2, C`1,3, and C`0,4. There are four
basis vectors ~ek, k ∈ {1, 2, 3, 4} with square ~e 2

k = εk, ~e 4
k = ε2

k = 1, e2
123 = e−2

123,
and e4

123 = 1. The five Clifford algebras are 16 dimensional with general elements

α
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Multiplying out (70) gives

α2 +~b2 + c2 + β2 e2
123 + ε4α′2 − ε4

~b′2 + ε4c′
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and the trivector part

αβ′ e123 +~b′ ∧ c = 0. (82)

Apart from the actual root equation (73) we have therefore the following set of
seven constraint equations

c · c′ = −αα′, (83)

α~b = −ε4
~b′ · c′ − βc e123, (84)

α~b′ = −~b · c′ − β′c e123, (85)

αc′ + α′c = ~b′ ∧~b, (86)

αc + ε4α′c′ = (ε4β′~b′ − β~b) e123, (87)

−~b ∧ c = −c ∧~b = αβ e123, (88)

−~b′ ∧ c = −c ∧~b′ = αβ′ e123. (89)

The outer products of (86) with ~b and ~b′ give the following useful identities

α~b ∧ c′ + α′~b ∧ c = 0
(88)
=⇒ α~b ∧ c′ = αα′β e123, (90)

α~b′ ∧ c′ + α′~b′ ∧ c = 0
(89)
=⇒ α~b′ ∧ c′ = αα′β′ e123. (91)

The inner products (left contractions) of (84) with ~b′ and of (85) with ~b lead to

α~b ·~b′ = −ε4
~b′ · (~b′ · c′)︸ ︷︷ ︸

0

−β~b′ · (c e123)︸ ︷︷ ︸
(~b′∧c) e123

= β(−~b′ ∧ c) e123
(89)
= αββ′ e2

123, (92)

α~b ·~b′ = −~b · (~b · c′)︸ ︷︷ ︸
0

−β′~b · (c e123)︸ ︷︷ ︸
(~b∧c)e123

= β′(−~b ∧ c) e123
(88)
= αββ′ e2

123. (93)

We further contract each side of (87) from the left with c to obtain

αc2 + ε4α′ c · c′︸︷︷︸
−αα′

= c · [(ε4β′~b′ − β~b) e123]

= ε4β′(c ∧~b′) e123 − β(c ∧~b) e123

(88),(89)
= −ε4αβ′2 e2

123 + αβ2 e2
123, (94)

or, equivalently,

αc2 = α[ε4α′2 − ε4β′2 e2
123 + β2 e2

123]. (95)
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For α 6= 0, we similarly contract each side of (87) from the left with c′ to obtain

α c · c′︸︷︷︸
−αα′

+ε4α′c′2

= c′ · [(ε4β′~b′ − β~b) e123]

= ε4β′(c′ ∧~b′) e123 − β(c′ ∧~b) e123

(90),(91)
= ε4α′β′2 e2

123 − α′β2 e2
123, (96)

or equivalently (ε2
4 = 1)

α′c′2 = α′[ε4α2 + β′2 e2
123 − ε4β2 e2

123]. (97)

The inner product of (84) with ~b leads to

α~b2 = −ε4
~b · (~b′ · c′)︸ ︷︷ ︸

(~b∧~b′)·c′

−β~b · (c e123)︸ ︷︷ ︸
(~b∧c) e123

= ε4(αc′ + α′c) · c′ + αβ2 e2
123

= ε4αc′2 + ε4α′ c · c′︸︷︷︸
−αα′

+αβ2 e2
123

= α[ε4c′2 − ε4α′2 + β2 e2
123] (98)

where we inserted (86) and (88) for the second equality. Assuming α′ 6= 0, equation
(98) leads with (97) to

α~b2 = ε4α[ε4α2 + β′2 e2
123 − ε4β2 e2

123]− ε4αα′2 + αβ2 e2
123

= α[α2 − ε4α′2 + ε4β′2 e2
123], (99)

The inner product of (85) with ~b′ leads to

α~b′2 = −~b′ · (~b · c′)︸ ︷︷ ︸
(~b′∧~b)·c′

−β′~b′ · (c e123)︸ ︷︷ ︸
(~b′∧c) e123

= −(αc′ + α′c) · c′ + αβ′2 e2
123

= −αc 6



14 E. Hitzer and R. Ab lamowicz

Inserting (95), (98), and (100) into the root equation (73) for α 6= 0 we obtain (for
all α′)

α2 +~b2 + c2 + β2 e2
123 + ε4α′2 − ε4

~b′2 + ε4c′2 − ε4β′2 e2
123

= α2 + ε4c′2 − ε4α′2 + β2 e2
123 + ε4α′2 − ε4β′2 e2

123 + β2 e2
123 + β2 e2

123

+ ε4α′2 + ε4c′2 − ε4α′2 − ε4β′2 e2
123 + ε4c′2 − ε4β′2 e2

123

= α2 + 3α2 − 3α2 + 3ε4c′2 + 3β2 e2
123 − 3ε4β′2 e2

123

= 4α2 + 3ε4[c′2 − ε4α2 − β′2 e2
123 + ε4β2 e2

123] = −1, (102)

If in addition α′ 6= 0 then with (97) we get for the root equation

α2 +~b2 + c2 + β2 e2
123 + ε4α′2 − ε4

~b′2 + ε4c′2 − ε4β′2 e2
123

= 4α2 + 0 = −1, (103)

Therefore, we have no solution for α 6= 0 and α′ 6= 0.

7.1. n = 4, α 6= 0, α′ = 0
In this case constraints (83) – (89) become

c · c′ = 0, (104)

α~b = −ε4
~b′ · c′ − βc e123, (105)

α~b′ = −~b · c′ − β′c e123, (106)

c′ =
1
α

~b′ ∧~b, (107)
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We calculate from (108) that

α2c2 = (ε4β′~b′ − β~b)2 e2
123

= (β′2~b′2 + β2~b2 − 2ε4ββ′~b′ ·~b) e2
123

(111),(113),(114)
= [β′2(−c′2 + β′2 e2

123) + β2(ε4c′2 + β2 e2
123)− 2ε4ββ′(ββ′ e2

123)] e2
123

= c′2(−β′2 + ε4β2) e2
123 + β′4 + β4 − 2ε4β2β′2

= c′2(−β′2 + ε4β2) e2
123 + [(−β′2 + ε4β2) e2

123]2. (115)

Inserting (112) in (115) we get

α2c2 = ε4c2c′2 + c4. (116)

If c2 6= 0 in (116) then

ε4α2 = c′2 + ε4c2, (117)

and the root equation (102) becomes with (112)

4α2 + 3ε4[c′2 − ε4α2 − β′2 e2
123 + ε4β2 e2

123] = 4α2 = −1, (118)

which has no solution for real[
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7.2. n = 4, α = 0, α′ 6= 0
For α = 0 the root equation (73) simplifies to

~b2 + c2 + β2 e2
123 + ε4α′2 − ε4

~b′2 + ε4c′2 − ε4β′2 e2
123 = −1, (124)

The constraint equations (83) – (89) which have to be satisfied become

c · c′ = 0, (125)

~b′ · c′ = −ε4βc e123, (126)

~b · c′ = −β′c e123, (127)

~b ∧ c = 0, (128)

~b′ ∧ c = 0. (129)

α′c = ~b′ ∧~b, (130)

α′c′ = (β′~b′ − ε4β~b) e123. (131)
Especially for α′ 6= 0 we obtain from (130) and (131) the constraints

c =
1
α′

~b′ ∧~b, (132)

c′ =
1
α′ (β′~b′ − ε4β~b) e123. (133)

It is obvious that with (132) equations (128) and (129) are then fulfilled, because

~b ∧~b′ ∧~b = 0 and ~b′ ∧~b′ ∧~b = 0. (134)

Due to (134) equation (125) is also fulfilled

c · c′ (132)
=

1
α′2

(~b′ ∧~b) · [(β′~b′ − ε4β~b) e123]

=
1

α′2
[β′(~b′ ∧~b ∧~b′) e123 − ε4β(~b′ ∧~b ∧~b) e123] = 0. (135)

Using (133) we now check the remaining (126) and (127)

~b′ · c′ =
1
α′

~b′ · [(β′~b′ − ε4β~b) e123]

=
1
α′ [β′~b′ ∧~b′︸ ︷︷ ︸

=0

e123 − ε4β~b′ ∧~b︸ ︷︷ ︸
=α′c

e123]
(130)
= −ε4βc e123, (136)

~b · c′ =
1
α′

~b · [(β′~b′ − ε4β~b) e123]

=
1
α′ [β′ ~b ∧~b′︸ ︷︷ ︸

=−α′c

e123 − ε4β~b ∧~b︸︷︷︸
=0

e123]
(130)
= −β′c e123. (137)
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Therefore, if the two constraints (132) and (133) are satisfied, all other necessary
equations are also satisfied and the root equation depends only on α′, β, β′, ~b,
and ~b′ :

~b2 +
1

α′2
(~b′ ∧~b)2 + β2 e2

123 + ε4α′2

− ε4
~b′2 + ε4

1
α′2

(β′~b′ − ε4β~b)2 e2
123 − ε4β′2 e2

123 = −1. (138)

7.3. n = 4, α = α′ = 0
For α = α′ = 0 the root equation (73) simplifies to

~b2 + c2 + β2 e2
123 − ε4

~b′2 + ε4c′2 − ε4β′2 e2
123 = −1, (139)

The constraint equations (83) – (89) which have to be satisfied become

c · c′ = 0, (140)

~b′ · c′ = −ε4βc e123, (141)

~b · c′ = −β′c e123, (142)

~b ∧ c = 0, (143)

~b′ ∧ c = 0. (144)

~b′ ∧~b = 0, (145)

β′
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Case: β = 0, β′ 6= 0
Now only the constraints

c · c′ = 0, ~b · c′ = −β′c e123, ~b ∧ c = 0 (155)

remain. The second identity in (155) is equivalent to the constraint

c = − 1
β′

~b · c′ e−1
123. (156)

We can check that based on (156) the other two constraints of (155) are also
satisfied

c · c′ = − 1
β′ [~b · c′ e−1

123] · c′ = − 1
β′ [(~b · c′) ∧ c′︸ ︷︷ ︸

=0

] e−1
123 = 0, (157)

and

~b ∧ c = − 1
β′

~b ∧ [~b · c′ e−1
123] = − 1

β′ [(~b ∧~b) · c′] e−1
123 = 0. (158)

Inserting β = 0 and (156) into (147) yields the root equation

~b2 +
1

β′2
(~b · c′)2 e2

123 + ε4c′2 − ε4β′2 e2
123 = −1. (159)

Case: β 6= 0
Because of β 6= 0, the constraints (148) – (152) reduce to

~b = 0, c = 0. (160)

and the root equation becomes

β2 e2
123 + ε4c′2 − ε4β′2 e2

123 = −1. (161)

7.3.2. n = 4, α = α′ = 0, ~b′ 6= 0.

Case: ~b = 0, β = 0
This reduces equations (140) – (146) to the constraints

β′ = 0, c · c′ = 0, ~b′ · c′ = 0, ~b′ ∧ c = 0, (162)

The root equation (139) becomes then

c2 − ε4
~b′2 + ε4c′2 = −1. (163)

Case: ~b = 0, β 6= 0
This reduces the constraint equations (140) – (146) to

c · c′ = 0, (164)

~b′ · c′ = −ε4βc e123 =⇒ c = −ε4

β
~b′ · c′ e−1

123, (165)

β′c = 0, (166)
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~b′ ∧ c = 0. (167)

β′



20 E. Hitzer and R. Ab lamowicz

We now check the remaining four constraints (140), (141), (143), (144) for consis-
tency. Due to the proportionality (181) of ~b and ~b′, (143) and (144) are seen to be
equivalent. Inserting (182) into the right hand side of (141) gives

−ε4β
(−1)

β′
~b · c′ e−1

123 e123
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Table 1. Geometric roots of −1 for Clifford algebras C`p,q, n =
p + q ≤ 3. The multivectors are denoted for n = 1 by α + β~e1,
for n = 2 by α + b1~e1 + b2~e2 + βe12, and for n = 3 by α + b1~e1 +
b2~e2 + b3~e3 + c1e23 + c2e31 + c3e12 + βe123.

n Cases Solutions A and root equations

1 no solution for C`1

A = ±e1 for C`0,1

2 α = 0 β2 = b2
1ε2 + b2

2ε1 + ε1ε2

β2 =

 b2
1 + b2

2 + 1 for C`2

−b2
1 + b2

2 − 1 for C`1,1

−b2
1 − b2

2 + 1 for C`0,2

α 6= 0 no solution

3 Constraint: 0 = ~b ∧ c = b1c1 + b2c2 + b3c3

α = β = 0 −1 = ~b2 + c2

−1 = b2
1ε1 + b2

2ε2 + b2
3ε3 − c2

1ε2ε3 − c2
2ε3ε1 − c2

3ε1ε2

−1 =


b2
1 + b2

2 + b2
3 − (c2

1 + c2
2 + c2

3) for C`3

b2
1 − b2

2 − b2
3 − (c2

1 − c2
2 − c2

3) for C`1,2

b2
1 + b2

2 − b2
3 + (c2

1 + c2
2 − c2

3) for C`2,1

−(b2
1 + b2

2 + b2
3)− (c2

1 + c2
2 + c2

3) for C`0,3

α = 0, β 6= 0 A = ±e123 for C`3, C`1,2

no solution for C`2,1, C`0,3

α 6= 0 no solution

• How can the graded structure of C`p,q be used best in the calculation of
higher order geometric multivector square roots of −1? This also includes
a question how to best use, for this type of computation, invariance of the
equation AA = −1 under Clifford algebra (anti) automorphisms such as
grade involution, reversion or conjugation, and under symmetries of the root
equation. For example, under the grade involution,

AA = −1 ⇐⇒ ÂÂ = −1. (187)
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periodicity of Clifford algebras and the isomorphisms with matrix rings. Cen-
tral elements squaring to −1 would be of particular importance as then they
can be used in place of the imaginary i.

• The further use of Clifford algebra computation software like CLIFFORD for
MAPLE and other packages [22,24,25].
Of special interest in physics are the Clifford algebras of Minkowski space-

time, sometimes called [17] space-time algebras C`3,1 and C`1,3. Table 2 contains
the complete set of all geometric roots of −1 for these algebras, so in particular all
possible geometric multivector elements that may take on the role of the imaginary
unit i in quantum mechanics, which is e.g. fundamental for the description of spin
and for wave propagation.

Finally, the door is now wide open to construct all possible new types of
Clifford Fourier transformations (CFT) [26] for multivector fields with domains
and image domains ranging over the full Clifford algebras involved or subalge-
bras and subspaces thereof. In particular all known Fourier transformations will
find their place in this new general framework. The close relationship of wavelet
transformations [27] and windowed transformations [28] to Fourier transformations
shows that also in these fields new mathematics is to be expected.

Examples of CFTs working with non-central replacements of the imaginary
unit i are the quaternion FT (QFT) [5, 13, 14, 29], and the CFT [9, 12] where
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[25] E. Hitzer, Geometric Calculus International – Software, http://sinai.mech.fukui-
u.ac.jp/gcj/gc int.html#software

[26] S. Said, N. Le Bihan, S. J. Sangwine, Fast complexified quaternion Fourier transform,
IEEE Transactions on Signal Processing, 56(4), pp. 1522–1531, 2008.

[27] B. Mawardi, E. Hitzer, Clifford Algebra Cl(3, 0)-valued Wavelet Transformation,
Clifford Wavelet Uncertainty Inequality and Clifford Gabor Wavelets, International
Journal of Wavelets, Multiresolution and Information Processing, 5(6), pp. 997-1019,
2007.

[28] B. Mawardi, E. Hitzer, S. Adji, Two-Dimensional Clifford Windowed Fourier Trans-
form, accepted for G. Scheuermann, E. Bayro-Corrochano (eds.), Applied Geometric
Algebras in Computer Science and Engineering, Springer, New York, 2009.

[29] B. Mawardi, E. Hitzer, R. Ashino, R. Vaillancourt, Windowed Fourier transform of
two-dimensional quaternionic signals, submitted to Appl. Math. and Computation,
March 2009.

[30] Psalm 92, verse 5, New Int. Version of the Bible, www.biblegateway.com

Eckhard Hitzer
Department of Applied Physics, University of Fukui, Bunkyo 3-9-1, 910-8507 Fukui,
Japan


