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Abstract. Tensor, Clifford and Grassmann algebras belong to a wide class of
non-commutative algebras that have a Poincaré-Birkhoff-Witt (PBW) “mono-
mial” basis. The necessary and sufficient condition for an algebra to have the
PBW basis has been established by T. Mora and then V. Levandovskyy as
the so called “non-degeneracy condition”. This has led V. Levandovskyy to
a re-discovery of the so called G-algebras (previously introduced by J. Apel)
and GR-algebras (Gröbner-ready algebras). It was T. Mora who already in the
1990s considered a comprehensive and algorithmic approach to Gröbner bases
for commutative and non-commutative algebras. It was T. Stokes who eigh-
teen years ago introduced Gröbner left bases (GLB) and Gröbner left ideal
bases (GLIB) for left ideals in Grassmann algebras, with the GLIB bases
solving an ideal membership problem. Thus, a natural question is to first seek
Gröbner bases with respect to a suitable admissible monomial order for ideals
in tensor algebras T and then consider quotient algebras T/I. It was shown
by Levandovskyy that these quotient algebras possess a PBW basis if and
only if the ideal I has a Gröbner basis. Of course, these quotient algebras are
of great interest because, in particular, Grassmann and Clifford algebras of
a quadratic form arise this way. Examples of G-algebras include the quan-
tum plane, universal enveloping algebras of finite dimensional Lie algebras,
some Ore extensions, Weyl algebras and their quantizations, etc. Examples of
GR-algebras, which are either G algebras or are isomorphic to quotient alge-
bras of a G-algebra modulo a proper two-sided ideal, include Grassmann and
Clifford algebras. After recalling basic concepts behind the theory of commu-
tative Gröbner bases, a review of the Gröbner bases in PBW algebras, G-,
and GR-algebras will be given with a special emphasis on computation of such
bases in Grassmann and Clifford algebras. GLB and GLIB bases will also be
computed.
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13P10, 16P40.

Keywords. PBW bases, monomial order, Gröbner GLB and GLIB bases, nor-
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2. Gröbner bases in polynomial rings

Our main reference is [19]. In particular, k[x1, . . . , xn] is a polynomial ring in
indeterminates x1, . . . , xn over a field k whereas V(f1, . . . , fs) is an affine variety
viewed as a subset of kn consisting of common zeros of polynomials f1, . . . , fs ∈
k[x1, . . . , xn]. In particular, 〈f1, . . . , fs〉 denotes an ideal in k[x1, . . . , xn] generated
by the polynomials. We say that ideal I ⊂ k[x1, . . . , xn] is finitely generated if
there exist f1, . . . , fs ∈ k[x1, . . . , xn] such that I = 〈f1, . . . , fs〉. Then we say that
f1, . . . , fs are a basis of I.

Proposition 2.1 (Cox). If f1, . . . , fs and g1, . . . , gt are bases of the same ideal in
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Once a monomial order > has been chosen, one can then determine the
leading term LT(f) in each polynomial f, and order any two monomials. This in
turn allows one to introduce the division algorithm

Theorem 2.3 (General Division Algorithm). Fix a monomial order > on Zn
≥0,

and let F = (f1, . . . , fs) be an ordered s-tuple of polynomials. Then every f ∈
k[x1, . . . , xn] can be written as

f = a1f1 + · · · asfs + r, (2.2)

where ai, r ∈ k[x1, . . . , xn] and either r = 0 or r is a linear combination, with coef-
ficients in k, of monomials, none of which is divisible by any of LT(f1), . . . , LT(fs).
We call r a remainder of f on division by F. Furthermore, if aifi 6= 0, then we
have multideg(f) ≥ multideg(aifi).

Remark 2.4. The remainder r in (2.2) (and the quotient monomials ai), is not
unique as it depends on the monomial order and on the division order of f by
the polynomials in F. This last shortcoming of the Division Algorithm disappears
when we divide polynomials by a Gröbner basis.

Remark 2.5. The termination of the Division Algorithm in k[x1, . . . , xn] is guar-
anteed by the fact that k[x1, . . . , xn] is a noetherian ring. For the actual algorithm,
see for example [19] or [21].

The next concept needed is that of a monomial ideal so that we can state
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Now that we know that every ideal in k[x1, . . . , xn] is finitely generated, we
are ready to define a Gröbner basis for an ideal I ⊂ k[x1, . . . , xn].

Definition 2.10. Fix a monomial order. A finite subset G = {g1, . . . , gt} of an ideal
I is said to be a Gröbner basis for I if

〈LT(g1), . . . , LT(gt)∈〉46 0 Td0{ ∈10l7 10.6005 0 Td[(=⇒]TJ/F14 ∃.∃6∈6 T{ 10.516634 Td[(〈⇒]TJ/F∀ ∃.∃6∈6 T{ 3.∀744 0 Td[(L⇒∀3(T(⇒]TJ/F11 ∃.∃6∈6 T{ 16.46I44 Td[(\⇒]TJ/F∀ ∃.∃6 T{∈{ 7.∃∈∀5 4 Td[(⇒⇒]TJ/F14 ∃.∃6∈6 T{ 3.∀744 0 Td[51n
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Example 2. Let f1 = x4 − 3xy, f2 = x2y − 2 ∈ k[x, y] and lex order with x > y.
Then, LT(f1) = x4, LT(f2) = x2y and

S(f1, f2) =
x4y

x4
· f1 − x4y

x2y
· f2 = y · f1 − x2 · f2 = −3xy2 + 2x2 ∈ 〈f1, f2〉.

Since LT(S(f1, f2)) divisible by neither LT(f1) nor LT(f2), or, LT(S(f1, f2)) /∈
〈LT(f1), LT(f2)〉, we see that f1, f2 is not a Gröbner basis of 〈f1, f2〉.

Buchberger’s algorithm for finding a Gröbner basis can be described as fol-
lows:

Buchberger’s Algorithm. Given {f1, . . . , fs} ⊂ k[x1, . . . , xn], consider the algo-
rithm which starts with F = {f1, . . . , fs} and then repeats the two steps

• (Compute Step) Compute S(fi, fj)
F

for all fi, fj ∈ F with i < j,

• (Augment step) Augment F by adding the non-zero S(fi, fj)
F

until the Com-
pute Step gives only zero remainders. The algorithm always terminates and
the final value of F is a Gröbner basis of 〈f1, . . . , fs〉.

We will see later that all of the above steps from defining a monomial order
through defining a Gröbner basis, S-polynomials, and a new algorithm in the non-
commutative cases of interest to us – Grassmann and Clifford algebras – will be
in principle repeated with certain modifications that will need to account for non-
commutativity of these algebras and for the fact that, in general, these algebras
unlike k[x1, . . . , xn] are not domains.

Example 3. Let F1 = {f1, f2} where f1 = 4(x1 − 1)2 + 4x2
2 + 4x2

3 − 9 and f2 =
(x1 + 1)2 + x2

2 + x2
3 − 4 are as in Example 1. For the monomial order lex order

with x1 > x2 > x3, we find f3 = S(f1, f2)
F1 = −16x1 + 7, so we extend F1 to

F2 = {f1, f2, f3}. Then, f4 = S(f1, f3)
F2 = 495 − 256x2

2 − 256x2
3, so we extend F2

to F3 = {f1, f2, f3, f4}. Next we find that S(f1, f4)
F3 = 0. Thus, we have

S(f1, f2)
F3 = S(f1, f3)

F3 = S(f1, f4)
F3 = 0.

Furthermore, we find that S(f2, f3)
F3 = S(f2, f4)

F3 = S(f3, f4)
F3 = 0. Since

S(fi, fj)
F3 = 0 for all i < j and fi, fj ∈ F3, we conclude that a Gröbner basis for

I = 〈f1, f2〉 finally is

F3 = {4(x1 − 1)2 + 4x2
2 + 4x2

3 − 9, (x1 + 1)2 + x2
2 + x2

3 − 4,

− 16x1 + 7, 495 − 256x2
2 − 256x2

3}. (2.5)

Before we show specific computational examples of applying Gröbner bases
in polynomial rings, we need to make the following observations:
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• Automatic geometric theorem proving [15,19].
• Expressing invariants of a finite group, e.g., symmetric polynomials, in terms

of generating invariants [19,52].
• Finding relations between polynomial functions, e.g., interpolating functions

(syzygy relations)2
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the hyperboloid 4x2
1 + 4x2

2 − 4x2
12 = 1. The primitive idempotents 1

2 (1 ± e1) and
1
2 (1±e2) belong to this variety when x12 = x2 = 0 and x12 = x1 = 0, respectively.
For a classification of families of general idempotents in Clifford algebras see [6].

Our second example is related to the screw theory represented in the language
of Clifford algebra C`0,3,1. This algebra contains a copy of the group of rigid
motions SE(3), its Lie algebra, the screws, and elements corresponding to points,
lines and planes in Euclidean space R3. [48] In fact, in [49], Selig and Bayro-
Corrochano take two copies of that algebra and use the Clifford algebra C`0,6,2 to
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polynomials defined by the relations (3.5) and then by reducing all coefficients of
the product (gḡ)Q0(gḡ)∗ modulo G. Since we are reducing modulo the Gröbner
basis, remainders of the reduction are uniquely defined. The Gröbner basis G for
the lex(α0 > α1 > α2 > α3 > β0 > β1 > β2 > β3) contains four polynomials
including the original two polynomials. Computing the difference we find

(gḡ)Q0(gḡ)∗ − Q0 = h1e1e2a3a + h2e1e3a2a + h3e1ea1a

+ h4e1ea2a3 + h5e2e3a1a + h6e2ea1a3

+ h7e2ea2a + h8e3ea1a2 + h9e3ea3a (3.10)

where hj ∈ R[α0, α1, α2, α3, β0, β1, β2, β3] and hj
G

= 0 for j = 1, . . . , 9. Thus,
indeed, Q0 is invariant under the group action (gḡ)Q0(gḡ)∗ where g is the rigid
transformation. The same way one can show that Q0 is not invariant under the
action of g or ḡ alone.

In general, the action on P shown in (3.7) needs to be computed modulo
G as well. Later in their paper Selig and Bayro-Corrochano deduce that the in-
ertia N must transform according to N → (gḡ)N(gḡ)∗ and hand-compute such
transformation of N when g = 1 + 1

2 txe1e. When g is more general, or as general
as possible, hand computation is no longer practical and the above approach is
superior.

Finally, we show a simple add-on procedure to CLIFFORD/Bigebra [3]
that can reduce symbolic polynomial coefficients of any element in the defined
Clifford algebra modulo a set of polynomial relations, e.g., as in (3.5). This ap-
proach is particularly useful when computing action of the Lipschitz group or the
spin groups [40] modulo relations that coefficients of general elements of these
groups must satisfy.

ReduceClipolynom:=proc(p::{cliscalar,clibasmon,climon,clipolynom})
local F,tmon,T,C,i,m,G:

F,tmon:=op(procname):
if type(p,clibasmon) then return p end if:
G:=Groebner:-Basis(F,tmon);
if type(p,cliscalar) then return Reduce(p,G,tmon) end if;
T:=convert(cliterms(p),list):
C:=[seq(coeff(p,m),m=T)];
C:=map(Groebner:-Reduce,C,G,tmon);
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For our third example, we need the following result [19].3

Proposition 3.1. Suppose that f1, . . . , fm ∈ k[x1, . . . , xn] are given. Fix a monomial
order k[x1, . . . , xn, y1, . . . , xm] where any monomial involving one of x1, . . . , xn is
greater than all monomials in k[y1, . . . , ym]. Let G be a Gröbner basis of the ideal
J = 〈f1 − y1, . . . , fm − ym〉 ⊂ k[x1, . . . , xn, y1, . . . , xm]. Given f ∈ k[x1, . . . , xn],
let g = f

G
be the remainder of f on division by G. Then

(i) f ∈ k[f1, . . . , fm] if and only if g ∈ k[y1, . . . , ym].
(ii) If f ∈ k[f1, . . . , fm], then f = g(f1, . . . , fm) is an expression of f as a poly-

nomial in f1, . . . , fm.

Example 7 (Symmetric polynomials). Let G be the symmetric group S3. Let

σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, and σ3 = x1x2x3

be the elementary symmetric polynomials in x1, x2, x3. [52] A Gröbner basis F for
the ideal I = 〈σ1 − y1, σ2 − y2, σ3 − y3〉 in lex(x1, x2, x3, y1, y2, y3) order is

F = [x3
3 − x2

3y1 + y2x3 − y3, x2
2 + x2x3 − x2y1 + x2

3 − x3y1 + y2, x1 + x2 + x3 − y1]

Let

f = x2
1x2 + x1x2

2 + 3x1x2x3 + x2
1x3 + x1x2

3 + x2
2x3 + x2x2

3 − x2
1x2

2x2
3.

It can be checked directly that f(x) = f(σx), ∀σ ∈ S3. That is, f is invariant
under S3 and f ∈ k[x1, x2, x3]S3 . Reducing f modulo F gives g = f

F
= y1y2 −y2

3 ∈
k[y1, y2, y3]. Thus, by part (i) of the above Proposition, we see again that f is
symmetric. Furthermore, from part (ii) we get that f = σ1σ2 − σ2

3 .

For more examples on finite group generators and finding the so called syzygy
relations (or, syzygies), see [19], [52]). For a small Maple package related to finite
group invariants as well as generators (relations) of syzygy ideals, see SP pack-
age. [5]

4. PBW rings and algebras

There is a natural and important progression in developing the theory of Gröbner
bases for Grassmann and Clifford algebras through the so called left Poincaré-
Birkhoff-Witt (PBW) rings and algebras. While these rings are non-commutative,
they possess a monomial basis and an admissible order can be defined on standard
monomials. Furthermore, like ordinary polynomial rings k[x1, . . . , xn], they are
domains and are left noetherian (Hilbert’s Basis Theorem). Furthermore, PBW
rings have the terminating multivariable division algorithm property, and every
non-zero left ideal in a PBW ring possesses a Gröbner basis. In particular, if G is
a Gröbner basis for a non-zero left ideal I in a PBW ring R, any “polynomial”

3Procedure isContained from SP
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where T (g) is the tensor algebra over the linear space of g and I is a two-
sided ideal generated by x ⊗ y − y ⊗ x − [x, y], ∀x, y ∈ g. Therefore, U(g) is
a PBW algebra and

U(g) = k{x1, . . . , xn; xixj = xjxi + [xj , xi], �deglex}
• Let q be a multiplicatively anti-symmetric n × n matrix over k, i.e., qi,j 6= 0

and qi,j = q−1
j,i for all 1 ≤ i, j ≤ n. The (multiparameter) n-dimensional

quantum space kq[x1, . . . , xn] associated to q is the quotient of the free
k-algebra k〈x1, . . . , xn〉 by the two-sided ideal associated to the relations
Q = {xjxi = qjixixj , j > i}. Let � be any admissible order on Nn. Then

Oq(kn) = k{x1, . . . , xn; Q, �}
is a PBW algebra.

• There are constructive methods to obtain new (left) PBW rings as Ore exten-
sions of a given (left) PBW ring. For example, skew polynomial Ore algebras
and rings of different3.
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A k-algebra A = T/I = k〈x1, x2, . . . , xn | xjxi = cijxixj + dij , ∀1 ≤ i < j ≤ n〉 is
called a G-algebra in n variables, if the following conditions hold:

- Ordering condition
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(when r = 1 or a vector of polynomials otherwise) of f and g as:

LeftSpoly(f, g) =

 xγ−αf − LC(xγ−αf)
LC(xγ−βg)

xγ−βg, if i = j,

0, if i 6= j.

The LeftSpoly form is needed for the Gröbner basis algorithm. A character-
ization of a Gröbner basis within a G-algebra can now be given. It will be the
foundation for implementing a Gröbner basis algorithm.

Theorem 5.9. Let I ⊂ Ar be a left submodule and G = {g1, . . . , gs} ⊂ I and let
LeftNF(−|G) be a left normal form on Ar with respect to G.
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6. Grassmann and Clifford algebras in Plural

G-algebras are defined in Plural [50] using ring command extended to non-
commutative variables. Then, a GR-algebra is defined as a quotient of a G-algebra
modulo a two-sided ideal I. It is of the type qring, for example, qring Q =
twostd(I)
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Example 9. Consider an ideal I = 〈2e1 ∧ e2 + e2 − 4e3 ∧ e4, e1〉 ⊂
∧

R4. Plural
and TNB return the following Gröbner basis for I in the Deg[Lex] order:

{e2 ∧ e3, e2 ∧ e4, 4e3 ∧ e4 − e2, e1} (6.1)

Example 10. Consider polynomials f1 = e5 ∧e6 −e2 ∧e3 and f2 = e4 ∧e5 −e1 ∧e3

in
∧

R6. The Gröbner basis for the ideal I = 〈f1, f2〉 in Deg[Lex] order returned
by Plural and TNB is

{e145, e245 + e156, e256, e345, e356, e13 − e45, e23 − e56} (6.2)

where e145 = e1 ∧ e4 ∧ e5, etc. This basis is different from the Gröbner GLB basis
in Stokes (see below) for this ideal which is

{e56 − e23, e45 − e13, e234 + e136, e1236}. (6.3)

Basis (6.2) is a GLIB basis in Stokes’ terminology that solves the ideal membership
problem while basis (6.3) is a GLB basis that does not solve that problem, hence
it is different from (6.2).

Example 11. We compute a Gröbner basis in a left ideal I = 〈e1 +2e2, 3e1 +e1e2〉
in C`2,0. The monomial order is dp= Deg[Lex].
LIB "clifford.lib";
ring R = 0,(e1,e2),dp;
option(redSB);
option(redTail);
matrix M[2][2];
M[1,1]=2;M[2,2]=2;
clifAlgebra(M);
qring Q =twostd(clQuot);
ideal I =
e1
+ 2*e2
,
3*e1
+ e1*e2
;
short=0;
ideal GB = std(I);

The Gröbner basis for I is {1}, hence the ideal I is the entire algebra.

Example 12. Take C`2,0
∼= Mat(2, R) and a primitive idempotent f = 1

2 (1 + e1).
Let S = C`2,0f = spanR{f, e2f} be a spinor ideal. Then a Gröbner basis for S in
the monomial order dp = Deg[Lex] is h = 1 + e1. Note that h = 2f is an almost
idempotent.

Example 13. Consider C`3,3
∼= Mat8(R) with a monomial order Deg[InvLex].

This order has no special name in Plural but we’ll call it “degree inverse lex
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order” drp. It can be entered in Plural as (a(1:n),rp) where n refers to the
number of non-commuting generators.

Algebra C`
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This last example shows the usefulness of the Gröbner basis for any left spinor
ideal S ⊂ C`p,q : Element p ∈ C`p,q belongs to S if and only if NF
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paravectors a, b ∈ R ⊕ R0,7 as shown by Lounesto. Element v is uniquely defined
by the chosen primitive idempotent f as v = we12...7 and w = 8(f + f̂) − 1. 5

Here, v = e124 + e235 + e346 + e457 + e561 + e672 + e713. A Gröbner basis for the
ideal S = C`0,7f in monomial order drp = Deg[InvLex] is:

g1 = e7f, g2 = e6f, g3 = e5f, g4 = e4f, g5 = e3f, g6 = e2f, g7 = e1f. (6.14)

It can be easily checked that gigj = 0, i, j = 1, . . . , 7. Units ei, i = 1, . . . , 7,
link these generators to the idempotent f. Of course, a Gröbner basis for the
corresponding ideal Ŝ = C`0,7f̂ is

ĝ1 = e7f̂ , ĝ2 = e6f̂ , ĝ3 = e5f̂ , ĝ4 = e4f̂ , ĝ5 = e3f̂ , ĝ6 = e2f̂ , ĝ7 = e1f̂ , (6.15)

and again ĝiĝj = 0. It is interesting to note that all seven nilpotent polynomi-
als (6.14) together with the idempotent f constitute eight basis elements for S
considered as a vector space.

In our last example in this section we will list Gröbner bases G for left spinor
ideals S = C`p,qf in all semisimple and simple Clifford algebras in dimensions
2 ≤ p + q ≤ 8. Furthermore, we discuss only Clifford algebras C`p,q such that
fC`p,qf ∼= R, that is, when p−q
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• (Exception) S = C`0,6f = LI(g1, . . . , g5) where f = uigi, gig1 6= 0, gigj = 0
for.]TJ/F
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7. GLB and GLIB bases in Grassmann algebras

In 1990 Timothy Stokes showed that Grassmann algebra is suitable for algorithmic
treatment when treated as graded-commutative algebra of “exterior polynomials”.
In [51] he defined two different Gröbner bases for left ideals in (super) Grassmann
polynomial algebra

∧
n,m of order (n, m) over a field k, char k 6= 2. Furthermore,
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Proposition 7.3 (Stokes).
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Theorem 7.7 (GLB Characterization Theorem). The following conditions are equiv-
alent.

(i) F is a GLB.
(ii) If f1, f2 ∈ F, and t ∈ Tn,m satisfies t · lcm(LMon(f1), LMon(f2)) 6= 0, then

t · S(f1, f2) →∗
F 0 where S(f1, f2) is an S-polynomial of f1, f2.8
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• When reducing an S-polynomial S(fi, fj) ∈ R = k[x1, . . . , xn] modulo a finite
set of polynomials F, for example, when computing a Gröbner basis, suppose
S(fi, fj)

F
= 0. Then, m · S(fi, fj)

F
= 0 for any monomial m = xα ∈ R. This

is often not the case in Grassmann or Clifford algebra due to the presence
of non-zero zero divisors. This complicates computation of Gröbner bases in
these algebras.
A major difference aside from the non-commutativity when computing Gröb-

ner bases in Grassmann and Clifford algebras is the presence, if not abundance,
of non-zero zero divisors. Algorithms to compute a left normal form and then a
left Gröbner basis in [35, 36] generalize the classical Buchberger’s algorithm from
k[x1, . . . , xn] to a quotient GR-algebras and solve the ideal membership problem.
However, care must be taken as vanishing of an S-polynomial modulo a set of
“polynomials” in Grassmann or Clifford algebra does not guarantee its vanish-
ing when the S-polynomial is pre-multiplied by a basis monomial. This has been
shown clearly by Stokes [51] who has introduced two types of Gröbner bases in
left ideals in Grassmann algebra: a GLB basis which guarantees uniqueness of a
the remainder, and GLIB which also guarantees that f

G
= 0 modulo a GLIB-type

Gröbner basis G is equivalent to f ∈ 〈G〉. See [11] for implementation of GLB and
GLIB bases for Grassmann algebras in a Maple package TNB.

Finally, we mention that non-commutative Gröbner bases in Grassmann al-
gebras and the issue of ideal membership surface when analyzing systems of partial
differential equations that arise in physics, i.e., in exterior differential systems as
shown in [29] and references therein. In particular, Hartley and Tuckey provide
another approach through the so called saturating sets to Gröbner bases in Grass-
mann and Clifford algebras in a REDUCE package called XIDEAL. A major appli-
cation emphasized in the paper is that Gröbner bases may help simplify exterior
differential systems and so help solve systems of partial differential equations.
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