
DEPARTMENT OF MATHEMATICS
TECHNICAL REPORT

GRÖBNER BASIS ALGORITHMS

FOR GRASSMAN
ALGEBRAS IN A MAPLE PACKAGE

MR. TROY BRACHEY

Tennessee Tech University

OCTOBER 2008

No. 2008 - 1

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505

Gröbner Basis Algorithms for Grassmann

Algebras in a Maple Package

Troy Brachey

September 30, 2008

Abstract

A brief discussion of an approach to calculating Gröbner bases in the
Grassmann (exterior) algebra with emphasis on the ideal membership
problem is presented. A new package written for computing Gröbner
bases in Grassmann algebras for Maple 11 is introduced.

1 Introduction

This paper will give details of the algorithms used by the author for the Maple
package TNB. The TNB package is capable of calculating Gröbner bases in the
Grassmann algebra. Very little space is devoted to background information and
more to the workings of the algorithms themselves.

Two separate types of Gröbner bases will be developed. However, only one
will be capable of determining left ideal membership. The steps taken to arrive
at each type of Gröbner basis will be similar to the steps taken to compute a

(ii) αiαj = αjαi, 1 ≤ i, j ≤ m

(iii) eiαj = αjei, 1 ≤ i ≤ n, 1 ≤ j ≤ m

Note that as a consequence of (i) above e2
i = 0. Thus there exist nonzero

zero divisors. Also observe that
∧

n,0 is a copy of the Grassmann algebra of
order n over the field k. Note also that

∧
0,m

∼= k[x1, x2, . . . , xm], is the ring of
commutative polynomials in m variables over the field k. Thus it is not a big
leap to see that the commutative techniques should produce similar results on
the super Grassmann algebra as they do on k[x1, . . . , xn] since our commutative
ring is embedded in the algebra. For the remainder of this paper, let m = 0,
and so we will be working within the Grassmann algebra.

The quality of being Noetherian is a very important concept in the computa-
tion of commutative Gröbner bases as it guarantees termination of the division

• Deg[InvLex] order gives [e123, e23, e13, e12, e3, e2, e1, 1]

• InvDeg[Lex] order gives [1, e1, e2, e3, e12, e13, e23, e123]

Note that RevLex, InvRevLex, and InvDeg[Lex] orders are not admissible.
The admissibility of the monomial order is important when redhTd[(e)]TJd; e

Algorithm 1 [4] Left Normal Form LeftNF(f |G)
1: h = f
2: while h 6= 0 and Gh = {g ∈ G | LM(g)|LM(h)} 6= ∅ do
3: choose g ∈ Gh

4: h = Spoly(h, g)
5: end while
6: return h

Theorem 1 (Characterization Theorem for GLBs). [7] The following condi-
tions are equivalent.

(i) F is a GLB.

(ii) If f1, f2 ∈ F, and t ∈ Tn satisfies t · lcm(LMon(f1), LMon(f2)) 6= 0, then
LeftNF(t · LeftSpoly(f1, f2)), F) = 0.

Based on the characterizations in Theorem 1, Algorithm 2 will compute a
GLB for a given list of Grassmann polynomials. Note that lines 6 and 7 of
Algorithm 2 ensure that the “if” condition in (ii) of Theorem 1 is met while
lines 8 through 17 perform the “then” statement of the Theorem.

Algorithm 2 [7] Gröbner left basis in
∧

n

1: G := F , B = {{f1, f2} | f1, f2 ∈ G; f1 6= f2}
2: while B 6= ∅ do
3: {f1, f2} := an element of B
4: B := B − {f1, f2}
5: g := LeftSpoly(f1, f2)
6: V := A − V (lcm(LMon(f1), LMon(f2)))
7: T := T (V) ∪ {1}
8: while T 6= ∅ do
9: t := an element of T

10: T := T − {t}
11: h := t · g
12: h′ := N(G, h)
13: if h′ 6= 0 then
14: B := B ∪ {{g, h′} | g ∈ G}
15: G := G ∪ {h′}
16: end if
17: end while
18: end while
19: return G

De109326 Tf 21.5305tF17 7]0 d
F14 9.9622 Td[(13)-1(:t343.711il)-1(e)]TJ/F17Td[0.1992 l43(oa[([)-222(f)]TJ/F8ld
F14 9.2 Td[(13)-1(3.4937 cm
BT
/F54 9.9626 Tf 133.7684 139l 7.9701 Tf -1534fo4-1.4944 Td[(2)8776 -1.4944 38r0-86.1534fo4-Gr¨)575f 10er1992 llef34(th)1(89.9626 -416ea 0 Td)1(89.bas1.49481.4944G 0 TL416IB0 Td[([7])-4 139l 7.970167.179.8982 -1154 Td[(0)]TJ/F14 9.960.47195 0 Td[(G)]TJ/F8 9.9626 Tf 60.79.31 0 Td[(g)]TJ/F17 7.9701 Tf Tf 511 9.9626LI[(G)]TJ/F14 9.9626 11 413254 0 Td[())]TJ/F14 9.9626 Tf 6.0883 0 TB)]TJ/F8 9.9626 Tf 10.8239 0 Td[0 Td[([7])-4 139l 7.970/F5.965161/F11 9.9626 Tim738 Tf1)1(ithef)]TJ/F7 0 T0i�

Theorem 2 (Characterization Theorem for GLIBs). [7] The following state-
ments are equivalent.

(i) F is a GLIB.

(ii) If f1, f2 ∈ F, then for any t, LeftNF(t · f1, F) = 0 and
LeftNF(t · LeftSpoly(f1, f2

3 The TNB Package

The TNB package is a package of procedures written for Maple 11 that can
compute Gröbner left bases and Gröbner left ideal bases in a Grassmann algebra.
When the package is loaded, 20 functions are exported.
> with(TNB);

TNB - package for computing Groebner bases in Grassmann algebras
TNB version delta 0.3 (March 12, 2008)
20 functions exported

[Deg , InvDeg , InvLex , InvRevLex , LCoeff , LMon, LTerm, Lex , NF , RevLex ,

TLSpolyG , TglbG , TglibG , TlcmG , TmingbG , idealpoly , isadmissible, makelist ,

pairs, testing]

Several procedures are from the package GfG [2]. These procedures are the
monomial orderings and procedures that use the monomial orderings to find
the leading term, monomial, and coefficients. The procedures are Deg , InvDeg ,
InvLex , InvRevLex , LCoeff , LMon;

a space of dimension n. The procedure does not return a zero polynomial.
If one of its randomly generated polynomials happens to be zero, it re-
cursively calls itself until it returns exactly N nonzero such polynomials.
This procedure is useful for testing purposes.

9. Procedure idealpoly creates a random polynomial (Clifford or Grassmann,
depending on the second argument) in an one-sided ideal J - left or right,
depending on the third argument- and generated by polynomials supplied
as the first list F. The second argument is expected to be wedge - for the
wedge product in a Grassmann algebra, or cmul - for the Clifford product
in a Clifford algebra. In either case, the algebra is considered over a space
of dimension equal to the largest index found in the list F. An output of
this procedure contains three items, in the following order:

(a) A list of random coefficients.

(b) A list of generators (it is a permuted list F due to removal of dupli-
cates in the first line of the procedure when Maple may and usually
does permute elements of F).

(c) Random polynomial. Assigning a name to this procedure will result
in the random polynomial being assigned to that name.

This procedure is useful for testing purposes.

10. Procedure testing takes a list of polynomials F and for each t ∈ T (V)
and computes the product t ∧ fi for i = 1, . . . , n where n is the number
of polynomials in the given list F then finds the LeftNF(t ∧ fi|F). This is
based on Theorem 2. It is useful in determining whether a given Gröbner
basis is a GLIB.

Package TNB also relies upon the CLIFFORD package [1]. The CLIFFORD pack-
age provides the basis monomials and exterior, or wedge, product which is used
for multiplication of Grassmann monomials. Type checking of arguments passed
to TNB procedures is also provided by the CLIFFORD package. When loading, the
TNB package automatically loads the CLIFFORD package and the BIGEBRA pack-
age which is part of the CLIFFORD library.

4 Applications and Examples

This section will show examples of the TNB package in use. In many examples
the results are compared to those from

Example 2. [7] Given f1 = e56 −e13 and f2 = e45 −e23 procedures TglibG and

p4 := e123

P := [Id + 2 e1 + 3 e3 + e13 , e1 + 3 e23 , e2 + e1 , e123]
First a GLIB will be computed by TNB. This Gröbner basis is capable of deter-
mining ideal membership.
> Tgb:=TglibG(P,Deg[Lex]);

Computed 21 S-polynomials among 7 polynomials in Groebner basis and
needed to compute 21

This procedure took 3.495 seconds to run.

Tgb := [e123 , Id + 2 e1 + 3 e3 + e13 , 1
3 e1 + e23 , e2 + e1 , e2 , e3 , Id]

P := [e1 + e3 + e13 , e1 + e23 , e2 + e1 , e123]
> GBt:=TglibG(P,Deg[Lex]);

Computed 15 S-polynomials among 6 polynomials in Groebner basis and
needed to compute 15

This procedure took 3.494 seconds to run.

GBt := [e123 , e1 + e3 + e13 , e1 + e23 , e2 + e1 , −e3 + e2 , e3]
> GBtm:=TmingbG(GBt,Deg[Lex]);

GBtm := [e2 + e1 , −e3 + e2 , e3]
The minimal Gröbner basis GBtm is capable of determining ideal membership.
Now Plural will compute a reduced Gröbner basis.
> Pgb:=PLURALforGlink(P,0,dp,[e1,e2,e3],input_for_Singular,

input_for_Maple,’infty’,’d’);

Pgb := [e3 , e2 , e1]
> GBtm<>Pgb;

[e2 + e1 , −e3 + e2 , e3] 6= [e3 , e2 , e1]
Note that the lists GBtm and Pgb are not identical. The difference is due to

the fact that Gröbner basis returned by TNB is a minimal Gröbner basis and the
one returned by Plural is a reduced Gröbner basis, which is a concept that is
also applicable in the non-commutative case [5]. To show that they are in fact
equal, it is sufficient to show that each of the generators of one ideal is contained
in the other. This can be accomplished by using the NF procedure to reduce
each generator with respect to the generators of the other ideal. Since Pgb is a
reduced Gröbner basis it can determine ideal membership.
> for i from 1 to 3 do NF(GBtm[i],Pgb,Deg[Lex]) end do;

0, 0, 0
This shows that every generator in the list GBtm is in the ideal generated by the
polynomials (in this case monomials) of Pgb.
> for i from 1 to 3 do NF(Pgb[i],GBtm,Deg[Lex]) end do;

0, 0, 0
It is important to recall that a minimal Gröbner basis given by the procedure
TmingbG

> N:=4:numofpols:=4:
i:=’i’:
P:=[]:
for i from 1 to numofpols do
p||i:=0:
end do:
for i from 1 to numofpols do
while p||i=0 or p||i=Id do
p||i:=rd_clipolynom(N):
end do:
P:=[op(P),p||i];
end do;
vars:=[e||(seq(i,i=1..N))];

P := [7 Id − 8 e14]

P := [7 Id − 8 e14 , 6 Id + 6 e13]

P := [7 Id − 8 e14 , 6 Id + 6 e13 , −4 e1 + 5 e3]

P := [7Id − 8e14 , 6Id + 6e13 , −4e1 + 5e3 , Id − 2e34 − 2e23 + e14 + e13 + e3]

vars := [e1 , e2 , e3 , e4]
> GB1:=TglibG(P,Deg[Lex]);

Computed 15 S-polynomials among 6 polynomials in Groebner basis and
needed to compute 15

This procedure took 17.784 seconds to run.

GB1 := [Id − 2 e34 − 2 e23 + e14 + e13 + e3 ,

Id + e13 , − 7
8 Id + e14 , e1 − 5

4 e3 , e3 , Id]
> GB1m:=TmingbG(TNBglib,Deg[Lex]);

GB1m := [Id]
> Pgb:=PLURALforGlink(P,0,dp,vars,input_for_Singular,

input_for_Maple,’infty’,’d’);

Pgb := [Id]
> evalb(GB1m=Pgb);

true

The last result shows that the two lists are equivalent. Thus the ideal generated
by the four polynomials is the whole algebra. Even though the polynomials
were restricted to degree at most 4, any degree polynomial will be in the left
ideal generated by them. This is from the fact that the reduced Gröbner basis
is only the Id element and so any polynomial in any degree algebra will be a
multiple of the generator.

Example 6. This example will use randomly generated polynomials of a higher
degree. Instead of using four polynomials of degree up to 4, there will be two
polynomials of unto degree 6 generated. That is the polynomials will be from
the Grassmann algebra

∧
6 . The same procedure will be used as before.

11

> N:=6:numofpols:=2:
i:=’i’:
P:=[]:
for i from 1 to numofpols do
p||i:=0:
end do:
for i from 1 to numofpols do
while p||i=0 or p||i=Id do
p||i:=rd_clipolynom(N):
end do:
P:=[op(P),p||i];
end do;
vars:=[e||(seq(i,i=1..N))];

P := [−e13 + 3 e46 − e6 − e2356]

P := [−e13 + 3 e46 − e6 − e2356 , e2]

vars := [e1 , e2 , e3 , e4 , e5 , e6]
> GB1:=TglibG(P,Deg[Lex]);

Computed 45 S-polynomials among 10 polynomials in Groebner basis and
needed to compute 45

This procedure took 16.769 seconds to run.

GB1 := [e1456 + 1
3 e156 , e13 − 3 e46 + e6 + e2356 , e135 + 3 e456 + e56 ,

e146 − 1
3 e16 , e156 , e346 − 1

3 e36 ,

e13 − 3 e46 + e6 , e16 , e36 , e2]

> GB1m:=TmingbG(GB1,Deg[Lex]);

GB1m := [e13 − 3 e46 + e6 , e16 , e36 , e2]
> Pgb:=PLURALforGlink(P,0,dp,vars,input_for_Singular,
input_for_Maple,’infty’,’d’);

Pgb := [e2 , e36 , e16 , e13 − 3 e46 + e6]
> evalb(convert(GB1m,set)=convert(Pgb,set));

true

In the last result the two lists GB1m and Pgb were converted to sets and compared
since Maple usually puts lists in random order making it difficult to compare
longer lists. The result is true and so the two sets are equal and thus the lists
are equal. This means that the ideal generated by the polynomials that were
randomly generated can be generated by the four polynomials given in GB1m
and Pgb. Thus TNB gave the same result as Plural did.

Example 7. This example will demonstrate that the GLB does not solve the
membership problem but the GLIB will. A few extra lines of code also allow
one to follow the computation of the GLB by listing out the S-polynomials as
they are computed and the new polynomials as they are added to the GLB G.

12

> f1:=e2456-e3;f2:=e14-e36;f3:=e1256-e13;
F:=[f1,f2,f3];

