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the process of learning to construct proofs may even involve students coming to know 
themselves better.  Indeed, the above student's comment, about waking up with a math 
problem, suggests that she has learned to persist until she eventually comes up with a 
solution, even if that's in the middle of the night.  Unfortunately, many students believe 
that they either know how to solve a problem (prove a theorem) or they don't, and thus, if 
they don't make progress within a few minutes, they give up and go on to something else.   
 Of course, undergraduate students do not learn to construct proofs only in 
transition-to-proof courses.  They tend to improve their ability to construct proofs 
throughout the entire undergraduate mathematics program.  Some departments do not 
even offer transition-to-proof courses, and some combine them with mathematics content 
courses such as discrete structures.  Occasionally, students are offered an R. L. Moore 
type course,4 that is, a course in which the textbook and lectures are replaced by a brief 
set of notes and in which the students produce all the proofs.  To some extent, the 
emphasis in such courses is on a deep understanding of the mathematical content -- 
however, it has been our experience that once students get started in such courses they 
often improve their proof making abilities very rapidly.  Unfortunately, a few students 
may have great difficulty getting started.   
 In whatever setting students are to progress in their proving abilities, one might 
expect the teaching to be somewhat special.  In many university mathematics content 
courses, teachers can profitably explain mathematical theorems and why they are true, 
but in teaching the skills and problem solving abilities involved in proving, one should 
also expect to emphasize guiding students' practice.  In developing such teaching, it can 
be useful to ask:  What kinds of difficulties do student have, and how might these 
difficulties be alleviated?   
 We will describe some results from the mathematics education research literature 
that address these questions.  However, it is important to note that this research typically 
makes no claim (as one familiar with other social sciences might expect) that all, or even 
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And, to a scientist, it can mean the positive results of an empirical investigation.  To 
comprehend the special way that "proof" is used in mathematics can take time and such 
everyday meanings can get in the way. 

Views of High School Geometry Students   

 A number of studies have documented the finding that the concept of 
mathematical proof is not quickly or easily grasped.  For example, in the middle of a 
year-long U.S. high school geometry course, after being introduced to deductive proof, 
students in five classes were given a short instructional unit designed to highlight 
differences between measurement of examples and deductive proof.  Seventeen of the 
students were interviewed and asked to compare and contrast two arguments (for 
different theorems) -- a deductive proof and an argument containing four examples using 
differently shaped triangles.  Some of these students had a nuanced "evidence is proof" 
view.  They considered empirical evidence to be sufficient proof for a statement about all 
triangles, provided one took measurements of each type of triangle -- acute, obtuse, right, 
scalene, equilateral, and isosceles.  Others had a qualified view of deductive proof, 
believing that a two-column proof only proved a theorem for the type of triangle depicted 
in the accompanying figure and would need to
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natural outgrowth of testing, refining, and verifying their own conjectures, the results 
were disappointing, even disastrous, for students entering England's universities.  
Apparently, the verifications, that had been intended to be student constructed deductive 
arguments, were instead turned into standardized templates and empirical arguments 
(Coe & Ruthven, 1994).   
 By 1995, the situation had caused so much concern that the London Mathematical 
Society issued a report on the problems as mathematicians perceived them.  The report 
stated that recent changes in school mathematics "have greatly disadvantaged those who 
need to continue their mathematical training beyond school level."  In particular, the 
following problems were cited:  "serious lack of essential technical facility -- the ability 
to undertake numerical and algebraic calculation with fluency and accuracy," "a marked 
decline in analytical powers when faced with simple problems requiring more than one 
step," and "a changed perception of what mathematics is -- in particular of the essential 
place within it of precision and proof" (London Mathematical Society, 1995, p. 2). 
 After the public outcry of mathematicians, a large-scale study, called Justifying 
and Proving in School Mathematics, was undertaken.  The study surveyed 2,459 high-
attaining Year 10 students (14-15 years old, that is, comparable to U.S. high school 
sophomores) in 94 classes from 90 English and Welsh schools.  In a series of papers and 
reports, it was convincingly documented that it was the new National Curriculum, as 
implemented by teachers, that was, in large part, responsible for the perceived decline in 
U.K. students' notions of proof and proving (Hoyles, 1997; Healy & Hoyles, 1998, 2000).   
 What did this large, mostly quantitative, but partly qualitative, study find?  In the 
Executive Summary of the report (Healy & Hoyles, 1998), one finds the following 
conclusions, amongst others.  (1)  Students' performance on constructing proofs was 
"very disappointing."  These better-than-average6 students were asked to judge whether a 
number of empirical, narrative, and algebr
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argument demonstrating the converse of the statement, If x > 0 , then x + 1
x
≥ 2 , to be a 

proof of it; these teachers seemed to focus on the correctness of the algebraic 
manipulations, rather than on the validity of the argument (Knuth, 2000b). 
 Given this result regarding some better and more committed secondary 
mathematics teachers, can one expect that beginning U.S. university students would be 
reasonably skilled at proof and proving?  Would they, for example, understand the 
distinction between proof and empirical argument?  Probably not.  

University Students' Views of Proof  

Undergraduate students sometimes come to see proofs and proving as unrelated to 
their own ways of thinking.  In order to cope, they may employ mimicking strategies with 
the result that they develop various views of proof that are unusual from a 
mathematician's viewpoint; Harel and Sowder (1998) have classified some of these 
"proof schemes."  These are not techniques of (mathematical) proof, but rather kinds of 
arguments, sometimes incorrect or incomplete, that some university students find 
convincing, and may even think of as proofs.8  An example of preservice elementary 
teachers’ views of proof follows.    
 In the 10th week of a sophomore-level mathematics course, 101 preservice 
elementary teachers were asked to judge verifications of a familiar result, if the sum of the 
digits of a whole number is divisible by 3, then the number is divisible by 3, and an 
unfamiliar result, 
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provided one avoids the pitfall, described above, of allowing mathematical 
"investigations" to conclude with purely empirical justifications.   

Understanding and Using Definitions and Theorems 

 Not only are there everyday uses of "proof" that might compound students' 
difficulties in coming to know what a mathematical proof is, students can be confused 
about the role of definitions in mathematics.   

Mathematical Definitions 

 Everyday descriptive, or dictionary, definitions10 describe both concrete and 
abstract things, already existing in the world, such as trees, love, democracy, or 
epistemology.  They can be both redundant and incomplete, and it is never clear whether 
all aspects of a definition must apply for its proper use. In contrast, mathematical 
definitions11 bring concepts into existence; the concept, say of group, means nothing 
more and nothing less than whatever the definition says.  While all parts of a 
mathematical definition definitely need to be considered when producing examples and 
nonexamples, other features of prospective examples need not be considered.  This point 
is often missed.  When asked whether F = 151×157 is prime, a number of preservice 
elementary teachers correctly, but irrelevantly noted that both 151 and 157 are prime, 
before going on to conclude that their product 
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2, 3, 5, 7, 9, 11, 15, or 63, a majority (29 of 54) stated that 3, 5, 7 were divisors since 
those were among the factors in the prime decomposition.  However, sixteen were unable 
to apply similar reasoning to 2 and 11, some noting instead that “M is an odd number” so 
“2 can’t go into it” or resorting to calculations (like the above) for 11.  In addition, many 
of these students believed that prime decomposition means decomposition into small 
primes (see also Zazkis & Liljedahl, 2004).   
 Undergraduate students often ignore relevant hypotheses or apply the converse 
when it does not hold.  A well-know instance is the use, by Calculus II students, of the 
converse of:  If  an∑  converges, then lim

n→∞
an = 0 , as an easy, but incorrect, test for 

convergence.  Some calculus books go on to point out that this theorem provides a Test 
for Divergence.  But, perhaps it would be better to explicitly state the contrapositive, 
If

  
lim
n→∞

an ≠ 0 , then  an∑ diverges. 

 Sometimes undergraduate students use theorems, especially theorems with names, 
as vague "slogans" that can be easily retrieved from memory, especially when they are 
asked to answer questions to which the theorems seemingly apply.  For example, Hazzan 
and Leron (1996) asked twenty-three abstract algebra students:  True or false?  Please 
justify your answer.  "In S7 there is no element of order 8."  It was expected that students 
would check whether there was a permutation in S7 having 8 as the least common 
multiple of the lengths of its cycles.  Instead, 12 of the 16 students who gave incorrect 
answers invoked Lagrange's Theorem12 or its converse.  Seven of them incorrectly 
invoked Lagrange's Theorem to say the statement was false -- there is such an element 
since 8 divides 5040.  Another two students inappropriately invoked a contrapositive 
form of Lagrange's Theorem to say the statement was true because 8 doesn't divide 7.  
The authors go on to point out that students often think Lagrange's Theorem is an 
existence theorem, although its contrapositive shows that it is a non-existence theorem:  If 
k doesn't divide o(G), then there doesn't exist a subgroup of order k.  Perhaps it would be 
good to state this version explicitly for students. 
 The above examples refer to students’ misuse of theorems when they are asked to 
solve specific problems, for example, determine whether a number is prime or a series 
converges, or decide whether a group has an element of order 8.  However, it is not hard 
to imagine similar difficulties when students attempt to use theorems in constructing their 
own proofs.   
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We describe the reasoning progress of Stephanie, one of the children with whom 
Maher and Martino (1996a, 1996b, 1997) began their long-range, but occasional, 
interventions commencing in Grade 1.  By Grade 3, the children had begun building 
physical models and justifying their solutions to the following problem:  How many 
different towers of heights 3, 4, or 5 can be made using red and yellow blocks?  
Stephanie not only justified her solutions, she validated or rejected  

her own ideas and the ideas of others on the basis of whether or not they made 
sense to her.  . . .  She recorded her tower arrangements first by drawing pictures 
of towers and placing a single letter on each cube to represent its color, and then 
by inventing a notation of letters to represent the color cubes. (Maher & Speiser, 
1997, p. 174)   

She used spontaneous heuristics like guess and check, looking for patterns, and thinking 
of a simpler problem, and developed arguments to support proposed parts of solutions, 
and extensions thereof, to build more complete solutions.  Occasional interventions 
continued for Stephanie through Grade 7.  Then in Grade 8 she moved to another 
community and another school and her mathematics was a conventional algebra course.  
The researchers interviewed her that year about the coefficients of (a + b)2  and  (a + b)3 .  
About the latter, she said "So there's a cubed . . .  And there's three a  squared  b  bcubed . . .  AndTsquared and there's b c 1 7 4 g e b r T D 
 n t 0 0 0 8  T s .  l a l i ,  " A - 0 . 0 0 h
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all but one student unsuccessfully began with the hypothesis --  f go  is one-to-one -- 
rather than assuming that  g(x) = g( y) . (Moore, 1994).  They did not appear to know how 
to use the definition of one-to-one and relate that to the structure of their proofs.13    

Unpacking the Logical Structure of Statements of Theorems   

 Another difficulty students have when constructing their own proofs is an 
inability to unpack the logical structure of informally stated theorems -- theorems that 
depart from a natural language version of predicate calculus.  That is, theorems that omit 
specific mention of some variables or depart from the use of for all, there exists, and, or, 
not, if-then, and if-and-only-if in a significant way.  For example the statement, 
Differentiable functions are continuous, is informal because a universal quantifier and the 
associated variable are understood by convention, but not explicitly indicated.  Similarly, 
A function is continuous whenever it is differentiable is informal because it departs from 
the familiar if-then expression of the conditional as well as not explicitly specifying the 
universal quantifier and variable.   
 Being able to unpack the logical structure of such informally stated theorems is 
important because the logical structure of a mathematical statement is closely linked to 
the overall structure of its proof.  For example, knowing the logical structure of a 
statement helps one recognize how one might begin and end a direct proof of it.  When 
asked to unpack the logical structure of four informally worded syntactically correct 
statements, two true and two false, undergraduate mathematics students, many in their 
third or fourth year, did so correctly just 8.5% of the time.  Especially difficult for them 
was the correct interpretation of the order of the existential and universal quantifiers in 
the false statement:  For a < b , there is a c so that f (c) = y  whenever   f (a) < y  
and  y < f (b) 14 (Selden & Selden, 1995).    
 Furthermore, the ability to unpack the logical structure of the statement of a 
theorem also allows one to know whether an argument proves that statement, as opposed 
to some other statement.  For example, eight mid-level undergraduate mathematics and 
mathematics education majors were asked to judge the correctness of student-generated 
"proofs" of a single theorem.15  Upon finding a proof of the converse particularly easy to 
follow, four initially incorrectly stated that it was a proof of the original statement, and  
two of these maintained this view throughout the interview (Selden & Selden, 2003).   

Understanding the Effect of Existential and Universal Quantifiers  

 One source of students' difficulties in discerning the logical structure of theorems 
is a lack of understanding of the meaning of quantifiers and that their order matters.  
                                                 
13 In a rather formally written proof, one might begin something like, “Suppose f go is one-to-one.”  But 
(with this definition), the hypothesis is not used until one attempts to prove that g is one-to-one by 
assuming ( ) ( )g x g y= .  An alternative definition, x y≠ implies ( ) ( )f x f y≠ , might have made this 
particular theorem easier to prove, but apparently the students did not think of using it. 
14 If  f 
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Undergraduate students often consider the effect of an interchange of existential and 
universal quantifiers as a mere rewording.  For example, in another study, when given the 
two statements:  

• For every positive number a  there exists a positive number bsuch that b < a .  
• There exists a positive number bsuch that for every positive number  a  b < a . 

24 of 54 students in undergraduate mathematics courses, such as linear algebra and 
multivariable calculus, and 3 of 9 students in a beginning graduate abstract algebra course 
said they were "the same" or were mere
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times, and perhaps, to the interviewer’s no longer accepting “unsure” as a response.  
Most of the errors detected were of a local/detailed nature rather than a global/structural 
nature, with only the two students who had proved the theorem themselves observing that 
the converse had been proved in (d).   
 When asked how they read proofs, the students said they attempted careful line-
by-line checks to see whether each mathematical assertion followed from previous 
statements, checked to make sure the steps were logical, and looked to see whether any 
computations were left out.  Several said they went through the proofs using an example.  
Also, for these students, a feeling of personal understanding or not--that is, of making 
sense or not--seemed to be an important criterion when making a judgment about 
correctness of a “proof.”  Thus, what students say about how they read proofs seems a 
poor indicator of whether they can actually validate proofs with reasonable reliability.  
While these students tended to “talk a good line,” their judgments at Time 1 were no 
better than chance (46% correct).   
 On the other hand, even without explicit instruction, the reflection and 
reconsideration engendered by the interview process eventually yielded 81% correct 
judgments, suggesting that explicit instruction in validation could be effective (Selden & 
Selden, 2003).  Indeed, several transition-to-proof textbooks include "proofs to grade,"16 
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students actively try to enhance their concept images, for instance, by considering 
examples and nonexamples?  

Getting to Know and Use a New Definition 

 In one study conducted by Dahlberg & Housman (1997), eleven students, all of 
whom had successfully completed introductory real analysis, abstract algebra, linear 
algebra, set theory, and foundations of analysis, were presented with the following formal 
definition.  A function is called fine if it has a root (zero) at each integer.  They were first 
asked to study the definition for five to ten minutes, saying or writing as much as possible 
of what they were thinking, after which they were asked to generate examples and 
nonexamples.  Subsequently, they were given functions and asked to determine whether 
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especially difficult, in particular, for preservice teachers (Zazkis & Liljedahl, 2004).  
Similarly, irrational numbers have no such representation; thus, in proving results such as 

 2  is irrational or the sum of a rational and an irrational is irrational, one is led to 
consider proofs by contradiction -- something often difficult for beginning students.    
 Symbolic representations can make certain features transparent and others 
opaque.18  For example, if one wants to prove a multiplicative property of complex 
numbers, it is often better to use the representation reiθ , rather than x + iy , and if one 
wants to prove certain results in linear algebra, it may be better to use linear 
transformations, T, rather than matrices.  Students often lack the experience to know 
when a given representation is likely to be useful.   
 It has been argued that moving flexibly between representations (e.g., of functions 
given symbolically or as a graph) is an indication of the richness of a student's 
understanding of a concept (Even, 1998).  Also, understanding an abstract mathematical 
concept can be regarded as possessing "a notationally rich web of representations and 
applications"  (Kaput, 1991, p. 61). 

Bringing Appropriate Knowledge to Mind 

 No one questions the need for content knowledge, sometimes referred to as 
resources,19
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To solve the above non-routine problem, one needs to know (1) that one might set 
the derivative of   4x3 − x4 − 30  equal to zero to find its maximum -3 and (2) that solutions 
of the given equation are where this function crosses the x -axis (which it does not).  
Many of the students had these two resources, but apparently could not bring them to 
mind at an appropriate time.  We conjectured that, in studying and doing homework, the 
students had mainly followed worked examples from their textbooks and had thus never 
needed to consider various different ways to attempt problems.  Thus, they had no 
experience at bringing their assorted resources to mind.  It seems very likely that a similar 
phenomenon could occur in attempting to prove theorems. 
 How does one think of bringing the appropriate knowledge to bear at the right 
time?  To date, mathematics education research has had only a little to say about the 
difficult question of how an idea, formula, definition, or theorem comes to mind when it 
would be particularly helpful, and probably there are several ways.  In their study of 
problem solving, Carlson and Bloom (2005) found that mathematicians frequently did not 
access the most useful information at the right time, suggesting how difficult it is to draw 
from even a vast reservoir of facts, concepts, and heuristics when attempting to solve a 
problem or to prove a theorem.  Instead, the authors found that mathematicians’ progress 
was dependent on their approach, that is, on such things as their ability to persist in 
making and testing various conjectures.  
 Our own personal experience of eventually bringing to mind resources that we 
had -- but did not at first think of using -- suggests that persistence, over a time  
considerably longer than that of the Carlson and Bloom interviews, can be beneficial.  
We conjecture that certain ideas get in the way of others, and that after a good deal of 
consideration, such unhelpful ideas become less prominent and no longer block more 
helpful ideas.  This may be related to a psychological phenomenon that can take several 
forms; for example, in vision, if one fixates on a single spot in a picture, it will eventually 
disappear.    

While coming to mind at the right time can be seen as an idiosyncratic, individual 
act, it may sometimes be related to the idea of transfer of one's knowledge.  How does 
one come to see a new mathematical situation as similar to a previously encountered 
situation and bring the earlier resources to bear on the new situation? 

Knowing What's Important and Useful 

 In addition to knowing what a proof is, being able to reason logically, unpack 
definitions, and apply theorems, and having a rich concept image of relevant ideas, one 
needs a "feel" for the content and what kinds of properties and theorems are important.  
Knowing what’s important should go a long way towards bringing to mind appropriate 
resources.     

Not Seeing that Geometry Theorems are Useful when Making Constructions 

Seeing the relevance and usefulness of one's knowledge and bringing it to bear on 
a problem, or a proof, is not easy.  Schoenfeld (1985, pp. 36-42) provides an example of 
two beginning college students who had completed a year of high school geometry and 
were asked to make a construction:  You are given two intersecting straight lines and a 
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point P marked on one of them.  Show how to construct, using straightedge and compass, 
a circle that is tangent to both lines and that has the point P as its point of tangency to 
one of the lines.  During a 15-minute joint attempt, they made rough sketches and 
conjectures, and tested their conjectures by making constructions.  When asked why their 
constructions ought or ought not to work, they responded in terms of the mechanics of 
construction, but did not provide any mathematical justification.  Yet the next day they 
were able to give the proof of two relevant geometric theorems within five minutes.  
Apparently, these students simply did not see the relevance of these theorems at the time.   

Knowing to Use Properties, Rather than the Definitions, to Check Whether Groups are 
Isomorphic 

 In another study, four undergraduates who had completed a first abstract algebra 
course and four doctoral students working on algebraic topics were observed as they 
proved two group theory theorems and attempted to prove or disprove whether specific 
pairs of groups are isomorphic:  Zn  and  Sn,  Q and Z,  Zp x Zq and  Zpq (where p and q 
are coprime),  Zp x Zq and Zpq (where p and q are not coprime),  S4 and D12.  Nine times 
these undergraduates, who were successful in only two of twenty instances, first looked 
to see if the groups had the same cardinality; after which they attempted unsuccessfully to 
construct an isomorphism between the groups.  They rarely considered properties 
preserved under isomorphism, despite knowing them (as ascertained by a subsequent 
paper-and-pencil test).  For example, they all knew Z is cyclic, Q is not, and a cyclic 
group could not be isomorphic to a non-cyclic group, but they did not use these facts and 
none were able to show Z is not isomorphic to Q, until afterwards.  These facts did not 
seem to come to mind spontaneously, or in reaction to this kind of question. 
 In contrast, the doctoral students, who were successful in comparing all of the 
pairs of groups, rarely considered the definition of isomorphic groups.  Instead, they 
examined properties preserved under isomorphism.  When the groups were not 
isomorphic, they showed one group possessed a property that the other did not; for 
example, Z is cyclic, but Q is not.  To prove Zp x Zq is isomorphic to Zpq , where p and q 
are coprime, three of them noted that the two groups have the same cardinality and 
showed  Zp x Zq is cyclic.  None tried to construct an isomorphism (Weber & Alcock, 
2004).   

Knowing which Theorems are Important 

In comparing the proving behaviors of four undergraduates who had just 
completed abstract algebra and four doctoral students who were writing dissertations on 
algebraic topics, it was found that the doctoral students had knowledge of which 
theorems were important when considering homomorphisms.  For example, in 
considering the proposition:  Let G and H be groups.  G has order pq (where p and q are 
prime).  f is a surjective homomorphism from G to H.  Show that G is isomorphic to H or 
H is abelian, all four doctoral students recalled the First Isomorphism Theorem within 90 
seconds.  In contrast, two undergraduates did not invoke the theorem, while the other two 
invoked its weaker form only after considerable struggle.  When the doctoral students 
were asked why they used such sophisticated techniques, a typical response was, 
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"Because this is such a fundamental and crucial fact that it's one of the first things you 
turn to” (Weber, 2001).   
 Another four undergraduates, who had recently completed their second course in 
abstract algebra, and four mathematics professors, who regularly used group-theoretic 
concepts in their research, were interviewed about isomorphism and proof (Weber & 
Alcock, 2004).  They were asked for the ways they think about and represent groups, for 
the formal definition and intuitive descriptions of isomorphism, and about how to prove 
or disprove two groups are isomorphic.  The algebraists thought about groups in terms of 
group multiplication tables and also in terms of generators and relations, as well as 
having representations that applied only to specific groups, such as matrix groups.  Each 
algebraist gave two intuitive descriptions of groups being isomorphic:  that they are 
essentially the same and that one group is simply a re-labeling of the other group.  To 
prove or disprove two groups are isomorphic, they said they would do such things as 
"size up the groups" and "get a feel for the groups," but could not be more specific.  In 
addition, they said that they would consider properties preserved by isomorphism and 
facts such as Zn is the cyclic group of order n. 
 In contrast, none of the undergraduates could provide a single intuitive description 
of a group; for them, it was a structure that satisfies a list of axioms.  While all four 
undergraduates could give the formal definition of isomorphic groups, none could 
provide an intuitive description.  To prove or disprove that two groups were isomorphic, 
these undergraduates said they would first compare the order (i.e., the cardinality) of the 
two groups.  If the groups were of the same order, they would look for bijective maps 
between them and check whether these maps were isomorphisms (Weber & Alcock, 
2004). 
 It may be that undergraduates mainly study completed proofs and focus on their 
details, rather than noticing the importance of certain results and how they fit together.  
That is, they may not come to see some theorems as particularly important or useful.  The 
mathematics education research literature contains few specific teaching suggestions on 
how to help students come to know which theorems are likely to be important in various 
situations.  But, it might be helpful to discuss with them: (1) which theorems and 
properties you (the teacher) think are important and why, (2) your own intuitive, or 
informal ideas, regarding concepts, and (3) the advantages and disadvantages of various 
representations.    

Teaching Proof and Proving 

Some Suggestions Emanating from Research 

One very positive finding, which was described earlier, is the remarkable 
sophistication of reasoning reached by some average school students who received brief 
interventions over a number of years (Maher & Martino, 1996a, 1996b, 1997).  As 
described above, these students used a variety of spontaneously developed heuristics.  
Eventually, in order to come to agreement, these students, more or less, invented the idea 
of proof in a concrete case.  If grade school students can be encouraged in this way, why 
not university students?  Perhaps this could be done in part with relatively short 
"interventions" spread across the entire undergraduate program.   



18 

 Another result is that younger students seem to prefer explanatory proofs written 
with a minimum of notation.  This was certainly the case for U.K. Year 10 students 
(Healy & Hoyles, 1998).  For example, instead of using mathematical induction to prove 
that sum of the first n integers is n(n+1)/2, one could use a variant of Gauss's original 
argument.  Namely, for any n, one can write the sum in two ways as (1 + 2 + 3 +  L  + n) 
and as (n + (n-1) + (n-2) +  L  + 1), then add corresponding terms to obtain n identical 
summands equal to n+1, so twice the original sum equals n(n+1).  Hence, the original 
sum must equal n(n+1)/2 (Hanna, 1989, 1990).  It seems plausible that undergraduates, 
and people more generally, might prefer proofs that provide insight to proofs that just 
establish the validity of a result.20  
 It also appears that great care should be taken to distinguish empirical reasoning 
from mathematical proof.  Exactly how this can be done effectively is not especially 
clear, since merely giving high school geometry students a short instructional unit on this 
distinction left some of them very unclear as to the difference between empirical 
evidence and proof (Chazan, 1993).  Perhaps secondary and university teachers need to 
stress this distinction often and also get students to discuss and reflect on situations where 
simple pattern generalization does not work. 
 Since current secondary teachers' conceptions of proof are somewhat limited and 
they sometimes accept non-proofs as proofs (Knuth, 2002a, 2002b), one way to enhance 
preservice secondary teachers' abilities to check the correctness of proofs might be to 
have them consider and discuss, in groups, a variety of student-generated "proofs," as 
well as having them provide feedback on each other's proofs. 
 In addition to explaining the difference between descriptive definitions in a 
dictionary and mathematical definitions, one can engage students in the defining process.  
For example, when using Henderson's (2001) investigational geometry text, one can 
begin with a definition of triangle initially useful in the Euclidean plane, on the sphere, 
and on the hyperbolic plane, but eventually students will notice that the usual Side-
Angle-Side Theorem (SAS) is not true for all triangles on the sphere.  At this point, they 
can be brought to see the need for, and participate in developing, a definition of "small 
triangle" for which SAS remains true on the sphere. 
 Perhaps it would also be possible to create classroom activities to improve 
students' ability to enhance their concept images and deal with representations flexibly.  
One suggestion is that upon introducing a new definition, one could ask students to 
generate their own examples, alternatively, to decide whether professor-provided 
instances are examples or non-examples, "without authoritative confirmation by an 
outside source"  (Dahlberg & Housman, 1997, p. 298).  Another possibility might be to 
engage students in conjecturing which kinds of symbolic representations might be useful 
for solving a given problem or proving a specific result.  Also, one could point out that 
when a theorem has a negative conclusion (e.g., 2 is irrational), a proof by 
contradiction may be just about the only way to proceed.   

For certain theorems in number theory, it has been suggested that the transition to 
formal proof can be aided by going through a (suitable) proof using a generic example 
                                                 
20 It has been suggested that proofs have various functions within mathematics: explanation, 
communication, discovery of new results, justification of a new definition, developing intuition, and 
providing autonomy (e.g., Hanna, 1989; de Villiers, 1990; Weber, 2002). 
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that is neither too trivial nor too complicated (Rowland, 2002).  Gauss's proof that the 
sum of the first n integers is n(n+1)/2, done for n = 100 is one such generic proof.  Done 
with care, going over generic proofs interactively with students could enable them to 
"see" for themselves the general arguments embedded in the particular instances.  If the 
theorem involves a property about primes, 13 and 19 are often suitable, provided the 
proof is constructive and that prime (e.g., 13) can be "tracked" through the stages of the 
argument.  A generic proof, but not the standard one, can be given for Wilson's Theorem:  
For all primes p,  ( p −1)!≡ p −1(mod p) .  That argument for p
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be encouraged to write parts of a tentative proof "out of order" (e.g., What will the last 
line say?), even when they sometimes resist doing so. 
 There seems to be quite a lot to learn about the way in which proofs are 
customarily written.  If students were taught about this way of writing in some of their 
courses, they might not be so puzzled about how to begin a proof.  Indeed, we take the 
point of view that proofs are deductive arguments in an identifiable genre.  They differ 
from arguments in legal, political, and philosophical works.  Within this genre, individual 
styles can vary, just as novels by Hemingway and Faulkner have differing styles, 
although their novels are easily seen as belonging to a single genre that clearly differs 
from newspaper articles, short stories, or poems.  As part of some ongoing work, we have 
been collecting general features of the genre of proof.  For example, definitions already 
stated outside of proofs tend not to be written into them.  In teaching, we have found that 
pointing out such features, especially in the context of a student's own work, can be 
helpful to students. 
 Furthermore, we have found it useful to have students carefully examine the 
structure of the statement that they are trying to prove, and even to think about how a 
tentative proof might be structured, before launching into it.  For example, consider 
proving the theorem (mentioned earlier):  Let  f  and  g  be functions on A.  If f go  is 
one-to-one, then g is one-to-one.  It would be useful for a prover to first unpack the 
meaning of g being one-to-one.  Doing so can direct one to begin the proof by writing, 
"Let x and y be in the domain of g and suppose g(x) = g(y)."  This also makes clear that 
the desired conclusion is "Thus x = y."  In this way, one exposes the "real, but hidden" 
mathematical task, namely, to get from g(x) = g(y) to x = y.  After that, students can 
concentrate on how the hypothesis that f go  is one-to-one might help. 
 
Concluding Remarks   

 We have tried to provide readers with a coherent organization of some of the 
mathematics education research on proof and proving, but there is much more.22  
Awareness of the variety of difficulties undergraduates have with proof and proving can 
make one more sensitive regarding how to help them.  The above pedagogical 
suggestions indicate some steps one might take; however, more information on "what 
works" is needed.    
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