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Abstra t c

This short note will discuss Theorems 1, 3 and 4 of Strassen’s paper [6] from
the viewpoint of completely modern treatment of conditional distributions.

1 Preliminary

1.1 Hahn-Banach and separation theorem.

A real-valued function h on a real linearfspace

o is a linear functional on a subspace Ey of E such that f; + h on
Eo. Then Ty can be extended to a linear functional ¥ on E satisfying f + h on E
(Hahn-Banach theorem; see 5.2 of [3]).

Now let E be a locally convex linear topological space, and let A and B be non-
empty convex subset of E. Then there exists a non-trivial continuous linear functional f
on E such that supf(A) + inf f(B) if and only if int(A) O B = >, where supf(A) :=

(Separation theorem; see Theorem 14.2 of [5])

A) we den
. Furthermore, thel



that is, the smallest topology such that the linear functional x*(X) on X* is continuous
for every x X X (see, e.g., page 194 of [2]). Then a linear functional ¥ on X* is weak*
continuous if and only if we have f(x*) = x*(x) for some x X X (17.6 of [5]). Also
note that the weak* topology is always Hausdor and locally convex (see the paragraph
above 17.6 of [5]).

Theorem 1.1. Let K be a non-empty, convex and weak* compact subset of X*, and let

D h(x) := sup x*(x) for all x X X.
X eK
Then (a) h is a continuous Minkowski functional on X, and (b) K = {x* X X* : x* +

h}.

Proof. In (@) it is easy to see that h is a Minkowski functional. To verify the continuity
of h, observe that a Minkowski functional h is norm-continuous if and only if
Ihl := sup |h(X)|<=.
lIx]I<1
(The proof of the above statement is analogous to that of Theorem 6.1.2 of [2].) Let U; =

{xX* X X* 2 Ix*I < i} be an open set in X* for each i = 1,2,.... Since K is compact,
there is an integer N such that K O #I\.,U;. Hence we have Ihl + sup



Theorem 2.1. Let x* X X*, and let h,, be a kernel. Then the following statements are
equivalent:

(i) x* + h with the Minkowski functional (3);

(i) there is a linear kernel x*, such that

() X +h“’U for all w X Q;

w

(5) X*(xX) = x (X)du(w) for all x X X.

In Theorem 2.1 (ii) is clearly su cient for (i). We first present the proof of its
necessity when Q is discrete, following the remark at page 426 of Strassen [6]. Let
K be the subset of X* in which each x* is expressed in the form of (5) with some
linear kernel x?, satisfying (4). Then it is not di cult to s. Then itis subset of



Q + H on L. Let x X X be fixed. We can define a signed measure Qx on (Q, B) by
setting Qx(A) := Q(xla). Observing that

(6) -H(-xlIa) + Qx(A) + H(xla) for every A X B,
e obtain Qx r . Thus, there is a Radon-Nikodym derivative g.,(X) such that Qx(A) =
0 (X) dp(w).
A

Il. p-almost everywhere properties of q,,(x) and construction of X} (x). Given a,b X R
and x,y X X, the linearity and Property (b) of the extension Q imply respectively
that (a) g.(ax + by) = aq,(x) +bg,(y) and (b) q.(X) + h,(x) for p-ae. w X Q.



measure on F for p-a.e. w X Q, and (b) the map w ) P(E,w) is B-measurable for
every E X F. A conditional distribution P defines the probability measure (P > L) on
(RxQ,F ; B)via

U uu
) gd(P >y = g(r,w) P (dr,w) du(w)

for any (P > p)-integrable function g (see, e.g, Theorem 10.2.1 of [2]). It should be noted
that, given the measures pLand (P <), the existence of conditional distribution P cannot

be guaranteed unless R



space R in Section 56 of [4].) Therefore, we can rewrite Theorem 3.1 in the form of
Theorem 2.1. However, the Banach space C(R) in the place of X is not separable in
general. The following proof of Theorem 3.1 introduces an additional technique to get
around.

Proof of Theorem 3.1. Assuming (i), we claim that there exists a desired conditional
distribution P in (ii).

I. Introduction of separable Banach space X. Let V be the countable algebra generated
by countable open base. For each B X V choose a sequence {Bn} of increasing compact
subsets such that B = lim_., Bn. Then we can construct a countable algebra U which
includes the algebra V and all the sequences {Bnh}'s for all B X V (cf. the proof of
Theorem 10.2.2 in [2]). Now for each A X U and ¢ > 0 choose a continuous function
Xae ONn R such that

a

1 if r XA

Xae(r) =
A= d(r, A) ;= inf{d(r,s) : s X A} > ¢,
and 0 + xa.(r) + 1 for all r X R. Thus, we can construct a separable subspace X of
C(R) which contains all xa .’s for all AX U and all ¢ > 0.

I1. Construction of probability measure P (-,w). When restricted on X, the kernel h,
and the linear functional x* in (4) satisfies Theorem 2.1(i), and therefore, there exists
a linear kernel x7, satisfying Theorem 2.1(ii). Observe for A X U \ {R, >} that

0= -sup(-Xac(R)) + -hu(-Xac) + X[ (Xae) + hu(Xac) + sup(Xa:(R)) = 1.

For each w X Q we can define a finitely additive nonnegative measure P (:,w) on the
algebra U via
P(Aw)= I(Iim X5, (Xa1/k), AXU.
—00

Then the map w) P (A,w) is B-measurable, and satisfies (3) for every A X U.
Let w X Q be fixed. Then P (:,w) satisfies for each B X V,

P(B,w) =sup{P(K,w): K XU and K is a compact subset of B},

and is called regular on V for U. According to Theorem 10.2.4 of [2], the regular finitely
additive P (-,w) is countably additive on V. Thus, we can extend it uniquely to a
measure P (-,w) on the Borel o-algebra F (see, e.g., Theorem 3.1.4 and 3.1.10 of [2])
satisfying (2). We can also show that P (-, w) is a probability measure for p-a.e. w X Q.
Since R is separable and v is tight (cf. Theorem 7.1.4 of [2]), for any § > 0 we can find
a sequence {Kn} of compact subsets such that R = limp_,oc Kn and v(K,) > 1 . §272",
We can immediately see that P (



Therefore, we obtain

FD
H{w:P(Kn,w)=>1_2"foralln})>1. (@{@-.ay):-1.6

n=1
which implies that P (R,w) = 1 for p-a.e. w X Q.

I11. Monotone class argument for the existence of P. Let E be the collection of E X F
such that the map w ) P(E,w) is B-measurable, satisfying (3). It is easy to check
that E is a monotone class; thus, E = F by the monotone class theorem (see, e.g., 4.4.2
of [2]). Therefore, P is a conditional distribution as desired in (ii). O

4 Capacity and Strassen’s Theorem 4.

Let G be the family of open subsets in R. A real-valued function f is called a
normalized capacity alternating of order 2 if (a) f(>) =0and f(R) = 1, (b) f(U) + (V)
whenever U O V, (c) f(U) = limy_. F(Un) whenever U, 6 U, and (d) f(U #V) +
f(UOV) + f(U)+ (V). The normalized capacity T alternating of order 2 defines the
continuous Minkowski functional h(U (R






