DEPARTMENT OF MATHEMATICS TECHNICAL REPORT

A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID

DR. ALLAN D. MILLS

 $\mathrm{MAY}\ 2004$

No. 2004-2

TENNESSEE TECHNOLOGICAL UNIVERSITY Coo \prec TN 0

A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID

ALLAN D. MILLS

ABSTRACT. This paper describes some of the cocircuits of a splitting matroid $M_{x,y}$ in terms of the cocircuits of the original matroid M.

1. Introduction

The matroid notation and terminology used here will follow Oxley [2]. In particular, the ground set and the collections of independent sets, bases, and circuits of a matroid M will be denoted by E(M), I(M), B(M), and C(M), respectively. The fundamental circuit of an element e with respect to the basis B (see [2, p. 18]) will be denoted by C(e, B).

Fleischner [1] introduced the idea of splitting a vertex of degree at least three in a connected graph and used the operation to characterize Eulerian graphs. For example, the graph G_{-} in Figure 1 is obtained from G by splitting away the edges x and from the vertex . Raghunathan, Shikare, and Waphare [3] extended the splitting operation from graphs to binary matroids. One of their results [3, Theorem 2.2] can be used to define the splitting operation in a binary matroid in terms of circuits.

Definition 1.1. Let *M* be a binary matroid and suppose x, E(M). The splitting matroid *M* is the matroid having collection of circuits $C(M) = C_0 = C_1$ where

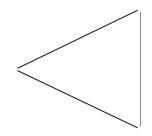
The next result, due to Shikare and Asadi [4], characterizes the bases of a splitting matroid M_{\perp} in terms of the bases of the original matroid M.

Lemma 1.2. Let M be a binary matroid and suppose x, E(M). Then $B(M_{-}) = \{B \ \{ \} \mid B \ B(M), E - B \text{ and the uni ue ir uit}$ ontained in B ontains either x or $\}$.

The results in the next section describe some of the cocircuits of M in terms of the cocircuits of M. Recall that the cocircuits of a matroid M

¹⁹⁹¹ Mathematics Su $_{j}$ ect $\ \ assistantial$ of B35.

ALLAN D. MILLS



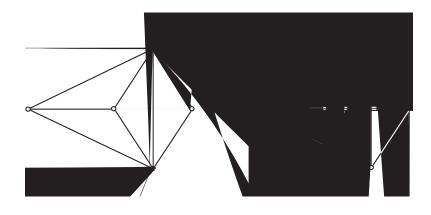
Lemma 2.3. uppose C

ALLAN D. MILLS

So $C(\ ,B)$ contains neither x nor and it follows that B B(M). We conclude that $C - \{x, \}$. Hence (B) $(C - \{x, \}) = .$ Therefore each basis of M must have non-empty intersection with $C - \{x, \}$.

We now show that $C - \{x, \}$ is a minimal set having non-empty intersection with all bases of M. Let B be a basis of M so that x = B, B, and $B = (C - \{x, \}) = .$ Let $\not= C - \{x, \}$. If $C(\not=, B)$ does

not contain x, then $|C(\pounds, B) \cap C| = 1$; a contradiction. Thus $x \cap C(\pounds, B)$. Moreover, $C(\pounds, B)$ and it follows that $B \notin B(M)$. Since for all $\pounds \cap C - \{x, \}$, the set $B \notin i$ s a basis of M, the set $C - \{x, \}$ is minimal having non-empty intersection with each basis of M. We conclude that $C - \{x, \}$ is a cocircuit of M.



Cocircuits of M	Type I sets	Cocircuits of M
{ , }	{ }	{ , }
{ , , }	{ , }	{ }
{ , x, }		{ , }
$\{ , x, , \}$		$\{x, \}$
$\{ , , e, \}$		$\{ \ , \ , e, \ \}$
$\{ , , e, \}$		$\{ , x, e, \}$
$\{ , x, e, \}$		$\{ \ , \ , e, \ \}$
$\{ , x, e, \}$		$\{ , x, e, \}$
$\{ , x, e, , \}$		$\{ , x, e, \}$
$\{ , x, e, , \}$		$\{ \ , \ , e, \ \}$
$\{ \ , \ , \ , e, \}$		$\{ , , e, \}$
$\{ \ , \ , \ , e, \ \}$		$\{ , x, e, \}$

Notice that the cocircuits of M are $\{x, \}$, the Type I sets of M, the sets - for each cocircuit of M containing a Type I set , and the cocircuits of M that do not contain a Type I set. The following conjecture proposes that this relationship holds in general.

Conjecture 2.5. uppose the sp ittin matroid M is obtained rom M and $\{x, \}$ is a proper subset o a o ir uit o M. Then

 $\mathcal{C}(M_{\mathcal{A}}) = \begin{cases} \{x, \} \\ C - \{x, \} \text{ or ea } h \text{ o ir uit } C \text{ o } M \text{ proper } y \text{ ontainin } \{x, \} \\ - \text{ or ea } h \text{ o ir uit } o M \text{ ontainin } a \text{ Type } \text{ set} \\ C \text{ o } M \text{ su } h \text{ that } C \text{ does not ontain } a \text{ Type } \text{ set} \end{cases}$

acknowledgement

This work was partially supported by a T.T.U. Faculty Research Grant.

References

- [1] Fleischner, H., Eulerian Graphs. In See cte pics i faph hea 2 (eds. L.W. Beineke, R.J. Wilson), pp17–53. Academic Press, London, 1983.
- [2] Oxley, J. G., Mat. oi hear Oxford University Press, New York, 1992.
- [3] Raghunathan, T. T., Shikare, M. M., and Waphare, B. N., Splitting in a binary matroid, *isc: ete Mathematics* **184** (1998), 267–271.
- [4] Shikare, M. M., and Asadi, Ghodratollah, Determination of the bases of a splitting matroid, u_f φea ou_f ā o_f om i at_G ics 24 (2003), 45–52.

AT AT CS ART T, SS C' VRS TY, V, --mai a fess: amills@tntech.edu