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A GENERALIZATION OF A GRAPH RESULT OF HALIN
AND JUNG

GALEN E. TURNER III AND ALLAN D. MILLS

Abstract. This paper provides a partial generalization to matroid
theory of the result of Halin and Jung that each simple graph with
minimum vertex degree at least 4 has K5 or the octahedron Kz 2 2
as a minor.

1. Introduction

The matroid notation and terminology used here will follow Oxley [4].
For a graph G, the associated simple graph will be denoted by G. Similarly,
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Figure 1. GF(2) representations of Rig and Ri».
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The next lemmas mvolve the matroids Rig and Ri2. The matrices Aig
and A;, shown in Figure 1 are GF'(2)-representations of Rig and Rio,
respectively.
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Next we present the proof of Theorem 1.2.

P%f. Let M be a 3-connected binary matroid such that g*(M) > 4.
Suppose M = M*(G) for some graph G and has no minor isomorphic
to M*(K33). Then G has no minor isomorphic to K3 3. It follows from
Lemma 2.1 that either G is planar or G = K5. Thus M is either graphic
or M = M*(K5). If M is graphic then Theorem 1.1 implies that M has an
M (K5)-minor or an M (K3 2 2)-minor. On the other hand, if M = M*(Ks),
then M has cocircuits of size 3; a contradiction. We conclude that the result
holds if M is cographic.

Now suppose M is a 3-connected regular matroid and ¢* (M) > 4. Then
Lemma 2.4 implies that M








