DEPARTMENT OF MATHEMATICS TECHNICAL REPORT

A GRADUA

A Graduate Student's Guide to $\[Mathbb{LATEX}\]$ and $\[Mathbb{AMS-LATEX}\]$

Rafal Ablamowicz Department of Mathematics, Box 5054 Tennessee Technological University Cookeville, Tennessee 38501, U.S.A. E-mail: rablamowicz@tntech.edu

May 26, 2003

Abstract

In this article we will show the basic usage o $\stackrel{A}{\longrightarrow}$ in writing athe atical a ers e will concentrate on escribing arious arts o a stan ar source ocu ent o twe article ro its rea ble through sections with athe atical contents to re erences sage o se eral stan ar co an s ro $\stackrel{A}{\longrightarrow} AMS \stackrel{A}{\longrightarrow}$ an **amsmath amsthm** an **amssymb** ac ages will be iscusse e will also brie w iscuss the usage o ttuthesis.sty style le or co osing aster theses an octoral issertations that con or to the re uire ents o the ra uate chool¹

Keywords: ource le co osing or tre esetting is laring or ulas auto atic re erencing $\stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \varepsilon$

Contents

1	The structure of a LATEX document	2
2	Proclamations2.1Basic IATEX proclamations2.2 $roo_{\mathfrak{C}}$ n ironm nt	4 بر
3	Basic LATEX .1 ormattin rst .2 t mixin an n m rin ispla, in mat matics n ral pacin o_c mat matical s, m ols ς r ncin an citin	6 ,7
4	Formatting displayed formulas J.1 E ampl o _c	11

5	Add	ditional examples	18
	.1	Bracsan or racs	1
	.2	ro ts an s ms	1
		Binomial pr ssions	1
	۲.	sin c stom comman s in align	1
		mor complicat amplocalign $\ldots \ldots \ldots$	1

```
\cline{\cline{1}} documentclass{article}
%%% Here starts the preamble of the document
%%% Formatting commands, if needed
\operatorname{setlength} \{-0.25in\}
\operatorname{setlength} \{\operatorname{textwidth} \{7.00in\}
\operatorname{setlength} \{-0.25in\}
. . .
\mathsurround 1.5pt
%%% Commands to load extra packages, if needed
\usepackage{amsmath}
\usepackage{amssymb}
. . .
%%% Custom definitions and macros
\def\begin{equation} \
\eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn} \eqn{\eqn} \eqn\\eqn\eqn} \eqn{\eqn} \eqn{\eqn} \eqn{\eqn} \eqn\\eqn} \eqn{\eqn} \eqn\\eqn\eqn} \eqn\\eqn\eqn\eqn} \eqn\eqn\\eqn\eqn\eqn} \eqn\eqn\\eqn\eqn
. . .
\mbox{newcommand} \{ Id \} \{ \{ bf 1 \} \}
. . .
%%% New environments
\newtheorem{lemma}{Lemma}
%%% Here starts the top matter of the document body
\begin{document}
title{...}
\operatorname{author}\{\ldots\}
date{...}
\maketitle
\tableofcontents
%%% Here starts the abstract
\begin{abstract}
. . .
\end{abstract}
%%% Here starts the main matter of the document body
\det\{\ldots\}
section{...}
subsection{...}
\ x{\ldots}
. . .
%%% Here starts the back matter of the document body
\begin{thebibliography}{9}
\end{thebibliography}
\end{document}
```

 $(i, r, 1, T, Str, ct, r, o_{c}an articl oc, m, nt)$

, n t is articl $\$ [ill conc ntrat primaril, on sp ci c \mbox{LAT}_EX comman s an ampl s $o_{\varsigma}t$ ir sa t at ar s $_{\varsigma}l$] n ritin a mat matical pap r or at sis. o_{ς} r it is p ct t at t s ampl s ill also , s $_{\varsigma}l$] n pr parin a $\$ is or at st. T n it is no, $o_{\varsigma}co$ rs to a on

2 **Proclamations**

roclamations in LATEX ar t or ms propositions l mmas initions corollaris tr. ic ot r is constitut malor components $o_{c}an$, matematical ritin. T, com in i rentstals an can n m r in man, i rent a, s. ill isc sst asic on stat ar alra, pr n in LATEX an a com anc, on stat com a aila l pon loa in pace a amsthm. Price t at to loa t is pace a loa in t pr am l comman stat t n LATEX

\usepa age amsmath
\usepa age amssymb
\usepa age amsthm

2.1 Basic LATEX proclamations

, n or r to s a proclamation it n s to n rst in t pr am l it t comman \ne the rem. or ampl to n t or m proposition l mma corollar, ampl nition an r mar n ironm nts plac t ollo in comman s in pr am l

```
\ne the rem the rem he rem
\ne the rem pr p siti n r p siti n
\ne the rem lemma emma
\ne the rem r llary r llary
\ne the rem example xample
\ne the rem e.initi n e.initi n
\ne the rem remar emar
```

To in o an $o_{\zeta}t$ s proclamations it n s to s as a an n ironm nt. or ampleto stat at orm on inst t orm n ironm nt it \begin the rem an n st t orm it \end{the rem as colloss}

```
\begin the rem in ateg ry \b. et the m n m rphisms are just the injection of the junctions the junctions is used to the set the set the rem
```

ic i s

Theorem 1. In category **Set**, the monomorphisms are just the injective functions (the functions f such that f x, f y implies x, y.

T rstar m nt in `ne the rem the rem is t nam or t n ironm nt t at ill in o t t or \underline{m} t s con ar m nt he rem is t nam t at ill print . LATEX ill a tomaticall, n m r t proclamation an print t t in a sital ont.

 n_r proclamation ma_r a an optional ar m nt or instanc

```
\begin the rem ier es he rem in ateg ry \b. et the m n m rphisms are /ust the in/e tie.un tins the.un tins . su h that . x^{l} . y^{l} implies x y ^{l} \label set \en the rem
```

ic i s

Theorem 2 (Pierce's Theorem). In category **Set**, the monomorphisms are just the injective functions (the functions f such that f x, f y implies x, y,

otic t at sinc a s la ls label set an label set it at orm contr can no r r to t orms, or instanc in T orm 2 a son o an optional param t r can, s . , c no ins rt anot r proclamation its n m rin ill start ar s . , or ampl

```
\begin e.initi n
n arr . \rightarr is an \b. epim rphism i. . r any pair . arr s
g \rightarr an h \rightarr the e uality g \ ir . h \ ir .
implies that g h
\label epi
\en e.initi n
```

Definition 1. An arrow $f A \rightarrow B$ is an **epimorphism** if, for any pair of arrows $g B \rightarrow C$ and $h B \rightarrow C$, the equality $g \circ f$, $h \circ f$ implies that g, h.

otic t at a intro c , t anot r co nt r or initions. T is a inition 1 is o r inition n m r 1. N , t is possil to n m r all proclamations cons c ti l, in ic cas o r rst inition o l a n m r sinc a stat to t or ms so ar. , t is also possil to n m r proclamations it in a s ction. , or mor information s

• nt pac a <code>amsthm</code> is loa a itional options com a aila l . ! n o_ct m is t st-l o_ca procla mation. T r ar t r st-l s

i plaint most mp atic ant talt

e.initi n l ss mp atic

ii remar t last mp atic.

T stal o_{ζ} all proclamations is stint pramel it t comman \the remstyle ... nt is articl a s

\the remstyle plain

 $\label{eq:limit} \begin{tabular}{ccc} \mbox{ic is also t} & \begin{tabular}{ccc} \mbox{a lt st}_{r} \mbox{l} & \begin{tabular}{ccc} \mbox{s} \mbo$

not roption a aila, l it amsthm is to s t * rsion o_c \ne the rem ic n s a proclamation t at is not n m r , t nam . or amplint pram, l a n to sc proclamations ain he rem an imit he rem.

\ne the rem* main ain he rem
\ne the rem* limit imit he rem

, or instanc (can no r1 $2 \downarrow T \downarrow r m2 \downarrow 1T_{e'}$ jalso

 $\textit{Proof.} T \text{ is is a proo_{\varsigma}t at is } n \quad \begin{subarray}{c} t & stan \ ar & \ldots & s_{r} \ m_{\bullet} \ ol. \end{subarray}$

\ umentstyle name re.eren es appr

inc ss ntiall, r, t in ls ma, r main t sam in t oc m nt it is no s rpris , LATEX is so pop lar amon mat maticians an sci ntists.

, n cas on ξ ants to mo $i_{\mathcal{C}}$ t ξ a lt pa st p from e.ault emplate on so l st age rmat emplate from TEX 2. The common satt top $o_{\mathcal{C}}$ t is so rc l. st s mar insttin common s to format t is articl.

• irst stt l \pm mar in T \pm lt is 1 inc so t \pm lolo in comman sts an .7 inc l \pm mar in.

\setlength \ si emargin # in

• T n stt i t o_st t t • at is l_t ill t ri t mar in., n t is cas ri t mar in is. in • 7, 7 \mathcal{R}_{v} in • 7 in.

\setlength \text i th in

• To st t top mar in sinc t a lt is 1 inc s t ollo in comman to st it to <math>.7 inc

\setlength \t pmargin # in

• To stt i to t t iss t ollo in comman .• at is l t ill t ottom mar in , nt is cas ottom mar in is 1 \mathbb{R}^{1} in \mathbb{Q} .7 in \mathbb{Q}^{1} in , \mathbb{R}^{1} in

\setlength \textheight in

3.2 Itemizing and numbering

T a o , ll t it ms r cr at , sin t so call itemized environment as collors s

```
\label{eq:linear} \begin item i e $$ \item his is the irst item recample $$ x^l \ x $$ x $$ $ item hile a main r $$ is $$ $ $ $ pi $ pi^l $$ en item i e $$ \end{tabular}
```

- nt-psttispro.cs
 - T is is t rst it m or ampl f x, $\sin 2x \int_{-\infty}^{\infty}$
 - •• il a omain or f is -,

con pr crs to n m r list it ms on o l n to s t so call enumerated environment as collo s

nt_psttispro_cs

1. T is is t rst it m or ampl f x, $\sin 2x - 0$.

2. If a omain or f is -,

r on cans t rst a anta o_c sin LATEX its a ilit, to a tomaticall, r n m r list it ms n a n it m is ins rt . or ampl l t s ins rt a n it m in t n t t o it ms a o

\begin enumerate \item his is the irst item _ r example _ x^1 _ \sin _ x#)^1 \item ere is a ne item say $\ s \, \bar{\mathbf{x}} \, \mathbf{x} \, \mathbf{x}$ \item hile a main r , is \ #\pi \pi) \en enumerate trtpsttin t 1. T is is t rst it m or ampl f x, $\sin 2x - \int_{0}^{\infty}$. 2. r is an timesa, $\cos \beta x$ for the second s . il a omain or f is - , • s a ain t rst n ironm nt. \begin itemi e $table a^{l}$ his is the irst item . r example _ xl \sin x#)l \item b^{l} hile a main, r , is $\#\pi\pi^{l}$ \item) he thir item n ill be isplaye an numbere \begin e uati n ⊥ xl \sin x#)l \label e sine \en e uati n \item b^l hile a main r , is #\pi \pi^l \en itemi e • t a T is is t $\$ rst it m $\$ or $\$ ampl f x, $\sin 2x - 6$.

il a omain or f is -, f. c T t ir it m no ill ispla, an n m r

$$\begin{array}{c} f x \\ \uparrow \end{array}, \quad \sin 2x - \uparrow \end{array}$$

$$a \int_{\pi^0}^{\pi} \sin x \, dx, \quad 2, \quad |-f x|$$

$$c \int_{0}^{\infty} \sin x \, dx, \quad 2, \quad |-f x|$$

r spacin in s ms tt r., t as n accomplis it t is co

! n mor comm nt , n t la l

\label e ∖en e uati n

otic tat ispla, loo s, ttrt an ... otic also tatin, ot ispla, st r as on sin l n m rassi n to t ntir arra,.

4.2 Example of align environment

• can ispla, ations i r ntl, sin comman align ic alloss to ali n al sins. of o r t at t is r_{c} , s cloomman is not pr s nt in stan ar LATEX, t is a ailal, pon loa in t amsmath paca it t comman \usepa age amsmath s t pr am l. a ain $r_{c}r$ to r and cormor information.

\begin align		•		
\e \e \e \e ⁾¹ \til e \phant m x	\e \ \e # #\e \ \e #	#g #g	\e \ \e # #\e \ \e #	ex ex
	#\e \ \e #	\t pl		

\en align

e

\begin e uati n

lt o, not s in t a o ta l s m ols r ot n s in mat matical pap rs ar \mathbb{R} or t r al l \mathbb{C} or t comple l \mathbb{H} or t a traininic i ision rin \mathbb{Z} or t rin o_c int rs. T s t so call mat lac oar ltt rs ar part o_c anot r pac a **amssymb** ic on can loa in t pr am l sin t comman \usepa age amssymb. Ot t at to t or ampl \mathbb{R} on can s t lon nam \mathbb or t a r iat macro \ n in t pr am l an li is or ot r ltt rs. T n \ i s t r al im nsional E cli an spac \mathbb{R}^3 .

4.6 Example of a more complicated table with tabular

T collo in is an amplo camor complicat talt at as n cr at sin tabular n ironm nt sp ci calls it cor cr atin tals.

Saturday, May 25											
ro	0	00	, ent	00	, ent	00	、 ent	00	, ent	00	, ent
	.			Announcements							
. د	۰.		11.		No parallel sessions						
. د		1	-	Break							
			1.5	No parallel sessions							
• · · ·	.		-	Break							
		Ar	nalysis	eol ¹ e ry r res ysi s Appli		li a ions					
		1		1	4.	1 . · ·	. · · · ·	1	4		· · · · ·
						· · · ·					
		Lunch									
		Coffee Social									
	General meeting and closing										

T co ortistal loosas ollos

\begin{center}

 \begin{small}

 $\begin{tabular}{|r|r|c c|c c|c c|c c|c c|} \ \%12 \ columns$

 $\label{eq:multicolumn} $$ \mathbb{12}{c}{\mathbb{S}turday, May 25}} \\$

From: & To: & Room: & Event: & Room: & Event: & Room: & Event: & Room: & Event: \\\hline

8:15 & 8:30 & BR119 & $multicolumn{9}{c|}{ \bf{Announcements}} \$

9:30 & 9:40 & $multicolumn{10}{c|}{e6(An63845)Tj | mp}$

\begin align			
# \til e ~	$\sum_{i=1}^{n}$	\label e	11
		\label e	11
\til e ~		\label e	
\en align			

 $\begin{array}{cccc} X & X^{\bullet} & 1, \\ & X^{2} & X, \\ & XX^{\bullet} & \bullet \\ \end{array}$

4.8 Example of splitting long expressions with multline and split

r s o o to split a lon pr ssion amon s ral lin s sin an nironm nt rom t amsmath pac a t at n s to loa trainto LAT_EX , t is begin multime len multime. or mor information a o t t is r_r s c l comman not pr s nt in stan ar LAT_EX a ain r r to 2 an ... To loa it s comman lusepa age amsmath.

\begin multline
 #)l # # ' L#' L#' # #')l #' L ' # ' \\
#' L#' # ' L# ' L # ' L # ' L# '
\en multline

t at i s

1 q

or mor in ormation.

4.9 Example of gather and gather*

```
\begin gather*
 b ) \ ( \ splaystyle \, ra )
                                  # )1\
                                            #∖_ra b
                                                             \ ua
\lambda = b \ (1 \ splaystyle \.ra #)^{1}
                                            #∖_ra b
                                                             //
                                                                   ex
                                                              # )lb
\alpha b b)1 \ isplaystyle \.ra # #
                                            )1/ .
                                                      #\.ra
                                                                         #
                                      # \1b
                              \_ra
                                                 #\_ra b
```

\en gather*

otic t at t orizontal spacin in t rst ro is controll it comman $\ ua$ il t rtical spacin is incr as t an s to ex. n t is n ironm nt ispla, it ms ar c nt r.

$$\begin{array}{c} q \ b_{1} \\ q \ b_{1} \\ h \end{array}, \quad \frac{q-1}{q} \begin{array}{c} 1 \\ \hline q \end{array}, \quad \frac{b_{1}}{q} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{1} \\ \hline p_{2} \\ \hline p_{2} \\ \hline p_{1} \\ \hline p_{2} \hline p_{2} \hline p_{2} \hline p_{2} \\ \hline p_{2} \hline p_{$$

T r mainin ampls com rom lst at cam it $T_EX 2$.

q

5 Additional examples

5.1 Braces and over braces

$$\begin{array}{c}
 k a's & l b's \\
 a, \dots, a, b, \dots, b \\
 \overline{k+l \text{ elements}}
\end{array}$$

5.2 **Products and sums**

```
\pr /\ge \biggl \sum \ge a /* \biggrl
\sum n\ge n\ \iggl \sum
```

\.ra b #)l \n tag \\
\phant m \hspa e* ex #' b #' b \label e \\ ex
' \ #\ isplaystyle \.ra t L b # # #)l #
\.ra t b # # #)l \n tag \\
\phant m \hspa e* ex #\ isplaystyle \.ra #)l b # # #
#' b #' b
\label e
\en align

XX

r a s parat t i lio rap ical ntri s it a p rc nt si n stor con ni nc. ptic t at in st l r r r nc s ill n m r . La ls hahn in bibitem hahn an grat er in bibitem grat er polo an as, to r m m r con ntion last nam polo r t r ar $o_c p$ lication. T n in t t t on can r r or cit a r r nc s in t comman lite r or ample can r r to t a o t o it ms list in o r r r r nc s at t n $o_c t$ is articl as 2 an λ . t is also possil to r r to t o or mor it ms it on lite hahn grat er comman to t 2 λ . I n can also cit sp ci c pa s. or instanc lite pages ## grat er ill i λ pa s 2 12. T onl r l to r m r a o tt s la ls is t at t , cannot start it a spac an cannot contain a comma or a spac.

lt o, t r ma, mor t an on the bibli graphy n ironm nt in articl on normall, o sn t s t at c at r nl ss on t ants to list r r nc s at t n o c ac c apt r or ampl. Tr rmor t n in ac i lio rap, t ntri s ill n m r rom 1. o r l t m s o r stan ar cormattin r l s o t . I nl, t titl s ar mp asize an onl, t ol m n m in m in ol ac.

```
\begin thebibli graphy
\bibitem amermesh
  amermesh   \emph r up he ry an 'ts ppli ati n t hysi al r blems is n# esley
  n n
\bibitem ablam
  blam i   \emph pin r representati ns   li.. r \l# algebras \l#  \l# symb li \l# a
```

References

1	am rm s	Groupiy ABy and Itsation	to Physical Problems	ison• s	l, Lon on
2	lamo ic cations	 <i>Spinorepresentations</i> (11) <i>pp.</i> 1 	Cli or algebras: A symbolic appry	Mach - S	sics omm ni
	omman	\begin thebibli graphy	as ar , m nt., n o, r t is ar , m	nt is . T	is t $l_{c} 12^{\bullet}_{\iota}$ L_{ι} T $(1 \ 1T_{c} \cdot 7 \cdot \bullet)$.
			lsst nan t n s _c or or	n n r or	it ms.

6.2 Index

```
, t i 12 p 2 ossi l 2 in 2 lar r 2^{\circ} o 2, c m n 2 ts 2^{\circ} to 2^{\circ} in rt 2^{\circ} in 2 n 2 tri s 1, t at 2
r, sira l n, p s ttin oo s. n, on t r st is r r to ...
```

7 Summary

, or a $\,$ itional so, $rc\,\,s\,\,o_{\varsigma}\,in$ ormation a o, t ttuthesis sty

\appen ix \se ti n inal r s \label pp .