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Abstract

CLIFFORD performs various computations in Graßmann and Clifford algebras. It
can compute with quaternions, octonions, and matrices with entries in C`(B) - the
Clifford algebra of a vector space V endowed with an arbitrary bilinear form B.
Two user-selectable algorithms for the Clifford product are implemented: cmulNUM -
based on Chevalley’s recursive formula, and cmulRS - based on a non-recursive Rota-
Stein sausage. Graßmann and Clifford bases can be used. Properties of reversion in
undotted and dotted wedge bases are discussed.
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1 Introduction

As many programs CLIFFORD emerged from a practical problem. Relatively
complicated algebraic manipulations with octonions, which can be performed
in spin(7), started a thread which has now developed into a multi purpose
algebra tool. It is the basic structure of a vector space V endowed with a
quadratic form Q



categorial sense ‘for free’– an algebra structure, the Clifford algebra C`(V, Q).
While in a conventional vector calculus one makes a good use of the vector
space structure, one does not have yet a vector algebra since vector multipli-
cation is missing. Having established a Clifford algebra structure provides one
with an entirely new formalism that now can be applied to solving completely
different problems.

In this sense, CLIFFORD is a basic tool for all such investigations and applica-
tions which can be carried in finite dimensional vector spaces equipped with a



2 Notations and basic computations

CLIFFORD uses as default a standard Graßmann basis (Graßmann multivectors)
in

∧
V where V = span {ei | 1 ≤ i ≤ n} for 1 ≤ n ≤ 9. Then

∧
V = span {ei ∧

ej ∧ . . . ∧ ek | 0 ≤ i < j < . . . < k ≤ n}. In CLIFFORD these basis monomials
are written as strings {Id, e1, . . . , e9, e1we2, e1we3, . . . , e1we2we3, . . . }
although they can be aliased to shorten input. Here e1we2 is a string that
denotes e1 ∧ e2 and Id denotes the identity 1 in

∧
V. However, CLIFFORD can

also use one-character long symbolic indices as in eiwej. Thus, in principle, it
can compute with Clifford algebras in dimensions higher than 9. For example,
when n = 3, Graßmann basis monomials are:
> W=cbasis(3);

W = [Id , e1 , e2 , e3 , e1we2 , e1we3 , e2we3 , e1we2we3 ]

but aliases can also be used to shorten input/output:
> eval(makealiases(3));

I, e12 , e21 , e13 , e31 , e23 , e32 , e123 , e132 , e213 , e231 , e312 , e321

In the above, eijk = eiwejwek is the wedge product of three 1-vectors: ei, ej, ek.
Thus, the most general element in the Graßmann algebra

∧
V is a Graßmann

polynomial which is just a linear combination of Graßmann basis monomials
with real coefficients. Notice that symbolic indices are allowed:
> p1:=Id+4.5*ei-alpha*e1we2we3;

p1 := Id + 4.5 ei − α e123

Reordering of Graßmann monomials can be explicitly accomplished with a
procedure reorder. CLIFFORD procedures ordinarily return their results in the
standard (reordered) basis.
> p2:=-e3we2we1-x0*Id+x12*e2we1+a*ejwei;reorder(p2);

p2 := −e321 − x0 Id + x12 e21 + a ejwei

e123 − x0 Id − x12 e12 − a eiwej

The wedge product ∧ is computed with a procedure wedge or its ampersand
counterpart &w :
> wedge(e1,e2),e1 &w e2;wedge(ea,eb,ec),ea &w eb &w ec;p1 &w p2;

e12 , e12

eawebwec, eawebwec

e123 − x0 Id − 4.500000000 x0 e1 + α x0 e123 − x12 e12
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Of course, irrespective of the bilinear form chosen, the Graßmann multiplica-
tion table will always remain as:
> wedgetable:=matrix(4,4,(i,j)->wedge(cbas[i],cbas[j]));

wedgetable :=




Id e1 e2 e12

e1 0 e12 0

e2 −e12 0 0

e12 0 0 0




Let B = g + F where g and F are the symmetric and the antisymmetric parts
of B :
> g,F:=matrix(2,2,[g11,g12,g12,g22]),matrix(2,2,[0,F12,-F12,0]);
> B:=evalm(g+F);

g, F :=




g11 g12

g12 g22


 ,




0 F12

−F12 0




B :=




g11 g12 + F12

g12 − F12 g22




Then, the Clifford multiplication table of the basis monomials in C`(B) will
be as follows:
> MultTable:=matrix(4,4,(i,j)->cmul(cbas[i],cbas[j]));

MultTable :=
[Id , e1 , e2 , e12 ]

[e1 , g11 Id , e12 + (g12 + F12 ) Id , g11 e2 − (g12 + F12 ) e1 ]

[e2 , (g12 − F12 ) Id − e12 , g22 Id , (g12 − F12 ) e2 − g22 e1 ]

[e12 , (g12 − F12 ) e1 − g11 e2 , g22 e1 − (g12 + F12 ) e2 ,

(g12e2



> clisort(simplify(%));

2 g12 Id

It is well known [16,19] that real Clifford algebras C`(V, Q) = C`p,q are classi-
fied in terms of the signature (p, q) of Q and the dimension dim V = n = p+q.
Information about all Clifford algebras C`p,q, 1 ≤ n ≤ 9, for any signature
(p, q) has been pre-computed and stored in CLIFFORD, and it can be retrieved
with a procedure clidata. For example, for the Clifford algebra C`2,0 (also
denoted as C`2) of the Euclidean plane R2 we find:
> clidata([2,0]); #Clifford algebra of the Euclidean plane

[real , 2, simple,
1

2
Id +

1

2
e1 , [Id , e2 ], [Id ], [Id , e2 ]]

The meaning of the first three entries in the above output list is that C`2 is
a simple algebra isomorphic to Mat(2, R). The 4th entry in the list gives a
primitive idempotent f that has been used to generate a minimal left spinor
ideal S = C`2f and, subsequently, the left spinor (lowest dimensional and
faithful) representation of C`2 in S. In general it is known that, depending
on (p, q) and n = dim V, the spinor ideal S = C`p,qf is a right K-module
where K is either R, C, or H for simple Clifford algebras when (p − q) 6= 1
mod 4, or R ⊕ R and H ⊕ H for semisimple algebras when (p − q) = 1 mod 4
[14,17]. Elements in the 5th entry (here [Id, e2 ]) generate a real basis in S
with respect to f, that is, S = span {Id &c f, e2 &c f} = span {f, e2 &c f}.
Elements in the 6th entry span a subalgebra F of C`(Q) that is isomorphic
to K. In the case of C`2 we find that F = span {Id} ∼= R. The last entry
in the output gives 2k generators of S (with respect to f) viewed as a right
module over K where k = q − rq−p and r is the Radon-Hurwitz number. 1

Number k is the number of factors 1
2
(1 + Ti), where {Ti}, i = 1, . . . , k, is a

set of commuting basis Graßmann monomials squaring in C`(Q) to 1, whose
product gives a primitive idempotent f in C`(Q). Spinor representation for all
Clifford algebras C`(Q), 1 ≤ n = p + q ≤ 9, and for any signature (p, q) has
been pre-computed [1] and can be retrieved from CLIFFORD with a procedure
matKrepr. For example, 1-vectors e1 and e2 in C`2 have the following spinor
representation in the basis {f, e2 &c f} of S = C`2f : 2

> matKrepr([2,0]);

[e1 =




1 0

0 −1


 , e2 =




0 1

1 0


]

In another example, Clifford algebra C`3 of R3 is isomorphic with Mat(2, C) :

> B:=linalg[diag](1,1,1):clidata([3,0]);

1 Type ?RHnumber in a Maple session when CLIFFORD is installed for more help.
2 We use the sloppy notation 1 ≡ 1 in Clifford algebra valued matrices which
produces a simpler display.
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[complex , 2, simple,
1

2
Id +

1

2
e1 , [Id , e2 , e3 , e23 ], [Id , e23 ], [Id , e2 ]]

and its spinor representation is given in terms of Pauli matrices:
> matKrepr([3,0]);

[e1 =




1 0

0 −1


 , e2 =




0 1

1 0


 , e3 =




0 −e23

e23 0


]

Notice that F = span {Id, e23} (e23 = e2we3 ) is a subalgebra of C`3 i-
somorphic to C. Since Pauli matrices belong to Mat(2, F ), it is necessary
for CLIFFORD to compute with Clifford matrices, that is, matrices of a type
climatrix with entries in a Clifford algebra.
> M1,M2,M3:=rhs(%[1]),rhs(%[2]),rhs(%[3]);

M1 , M2 , M3 :=




1 0

0 −1


 ,




0 1

1 0


 ,




0 −e23

e23 0


 .

Of course Pauli matrices satisfy the same defining relations as the basis vectors
e1, e2, and e3 : 3 For example:
> ‘M1 &cm M2 + M2 &cm M1‘ = evalm(M1 &cm M2 + M2 &cm M1);
> ‘e1 &c e2 + e2 &c e1‘=e1 &c e2 + e2 &c e1;e26921.28 44(;)Tj
+ 9.96264 347.6 Td048492(Mate1 Tf
9.9e1)-506(&2)-297(9c)- 0 9.96264 347.64 513.12 Tm
(r)Tj
;;>>



in C`(Q) in terms of a single matrix over a double field R⊕R or H⊕H rather
than as pair of matrices. 4

One can easily list signatures of the quadratic form Q for which C`(Q) is simple
or semisimple. For more information, type ?all sigs. For example, C`1,3 has
a spinor representation given in terms of 2 by 2 quaternionic matrices whose
entries belong to a subalgebra F of C`1,3 spanned by {Id, e2, e3, e2we3} :

> B:=linalg[diag](1,-1,-1,-1):clidata([1,3]);

[quaternionic, 2, simple,
1

2
Id +

1

2
e1we4 , [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ],

[Id , e2 , e3 , e23 ], [Id , e1 ]]

> matKrepr([1,3]); #quaternionic matrices

[e1 =




0 1

1 0


 , e2 =




e2 0

0 −e2


 , e3 =




e3 0

0 −e3


 , e4 =




0 −1

1 0


]

CLIFFORD includes several special-purpose procedures to deal with quaternion-
s and octonions (type ?quaternion and ?octonion for help). In particular,
following [18], octonions are treated as para-vectors in C`



3 Clifford product



cursive evaluation many superfluous terms appear that later cancel out at the
next recursive call. When the bilinear form is sparse numeric, many branches
of the recursion are cut out by Maple quite early due to automatic evaluation
that takes precedence over the recursion. In this case, the superfluous terms
disappear and are not passed on to the next recursive step. However, in the
symbolic case, in general, all these terms might be non-zero which prevents
fast completion of the recursion. Fortunately, Hopf combinatorial methods free
of the drawbacks of the recursion can also be applied and have been encoded
in cmulRS. Thus, the two ways to evaluate the Clifford product in CLIFFORD

have emerged.

We introduce the Chevalley deformation and the Clifford map to explain the
algorithm used in cmulNUM. The Clifford map γx is defined on u ∈ ∧

V as

(i) γx(u) = LC(x, u, B) + wedge(x, u) = x B u + x ∧ u
(ii) γxγy = γx∧y + B(x, y)γ1

(iii) γax+by = aγx + bγy

where x, y ∈ V (see, for example, [19]). One knows how to compute with the
wedge x∧u and the left contraction x B u with respect to the bilinear form B
(in CLIFFORD, the left contraction B is given by the procedure LC(x, u, B)).
Following Chevalley, the left contraction has the following properties:

(i) x B y = B(x, y)
(ii) x B (u ∧ v) = (x B u) ∧ v + û ∧ (x B v)
(iii) (u ∧ v) B w = u B (v B w)

where x ∈ V, u, v ∈ ∧
V and û is the Graßmann grade involution. Hence we

can use the Clifford map γx (Chevalley deformation of the Graßmann algebra)
to define a Clifford product of a one-vector x and a multivector u as

xu = x B u + x ∧ u.

Analogous formula can also be given for a right Clifford map using the right
contraction B implemented as the procedureu



(e1 ∧ e2) &c (e3 ∧ e4) = (e1 &c e2) &c (e3 ∧ e4) − B(e1, e2)1 &c (e3 ∧ e4)

= e1 &c (B(e2, e3)e4 − B(e2, e4)e3 + e2 ∧ e3 ∧ e4)

−B(e1, e2)1 &c (e3 ∧ e4)

and a second recursion of the process gives now

= B(e2, e3)B(e1, e4) − B(e2, e4)B(e1, e3) + B(e2, e3)(e1 ∧ e4)

−B(e2, e4)(e1 ∧ e3) + B(e1, e2)(e3 ∧ e4) − B(e1, e3)(e2 ∧ e4)

+B(e1, e4)(e2 ∧ e3) + e1 ∧ e2 ∧ e3 ∧ e4 − B(e1, e2)(e3 ∧ e4)

with the bolded terms cancelling out. Note that the last term in the r.h.s. was
superfluously generated in the first step of the recursion.

The Clifford product can be derived from the above recursion by linearity and
associativity. The induction starts with a left factor of grade one or grade zero
which is trivial, i.e., 1 &c ea ∧ . . .∧ eb = ea ∧ . . .∧ eb. In the case when the left
factor is of grade one, we use the Clifford product expressed by the Clifford
map of Chevalley, i.e., ea &c eb ∧. . .∧ec = ea B (eb ∧. . .∧ec)+ea∧eb ∧. . .∧ec.
We make a complete induction in the following way: If the left factor is of
higher grade, say n, one application of the recursion yields Clifford products
where the new left factor is of grade either n − 1 or n − 2, hence the recursion
stops after at most n − 1 steps.

A disadvantage of the recursive approach is that additional terms are pro-
duced by shifting Graßmann wedge products into Clifford products in order
to swap one factor to the right. While these terms eventually cancel out, their
computation increases unnecessarily the total computing time. More impor-
tantly, they may easily exhaust any computer memory available and prevent
Maple from completing the computation of the product.

An advantage of the recursive approach is realized when the bilinear form B is
numeric and sparse, that is, with many zeros. In this case, after each recursive



computation in Maple will be performed as follows:
> cmul(e1we2,e3we4);

(B2, 3 B1, 4 − B2, 4 B1, 3) Id + B2, 3 e14 − B2, 4 e13 − B1, 3 e24 + B1, 4 e23 + e1234

Notice also that cmul accepts an arbitrary bilinear form K as its argument:
> cmul[K](e1we2,e3we4);

(K2, 3 K1, 4 −K2, 4 K1, 3) Id +K2, 3 e14 −K2, 4 e13 −K1, 3 e24 +K1, 4 e23 +e1234

and likewise its ampersand form 8

> &c[K](ei,ejwekwel);

eiwejwekwel + Ki, j ekwel − Ki, k ejwel + Ki, l ejwek

where we have also shown the ability of CLIFFORD to use symbolic indices.
For clarity and to show our approach we display the algorithm of cmulNUM in
Appendix A.

3.2 Procedure cmulRS based on the Rota-Stein combinatorial process

The procedure cmulRS is computed using the non-recursive Rota-Stein clif-
fordization. See [4,5,12,20] and BIGEBRA help pages for additional references.
The cliffordization process is based on the Hopf algebra theory. The Clifford
product is obtained from the Graßmann wedge product and its Graßmann
co-product as shown by the following tangle:

&c :=

∆∧ ∆∧
B∧

∧
(2)

Here ∧ is the Graßmann exterior wedge product and ∆∧ is the Graßmann
exterior co-product which is obtained from the wedge product by a categorial
duality: To every algebra over a linear space A with a product we find a co-
algebra with a co-product over the same space by reversing all arrows in all
axiomatic commutative diagrams. Note that the co-product splits each input
‘factor’ x into a sum of tensor products of ordered pairs x(1)i, x(2)i. The main

8 Procedures cmulNUM and cmulRS do not have their special ampersand forms.
Procedure &c uses internally cmulNUM or cmulRS depending on the current value of
an environmental variable default Clifford product. Current value of this and
other environmental variables can be displayed by a procedure CLIFFORD ENV.
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requirement is that every such pair multiplies back to the input x when the
dual operation of multiplication is applied, i.e., x(1)i ∧ x(2)i = x for each i-
th pair. The ‘cup’ like part of the tangle decorated with B∧ is the bilinear
form B on the generating space V extended to the whole Graßmann algebra:
It is a map B∧ :

∧
V × ∧

V → k with B : V × V → k evaluating to B(x, y)
on vectors in V . Hence, cmulRS computes the Clifford product on Graßmann
basis monomials x and y for the given B, which is later extended to Clifford
polynomials by bilinearity, as follows:

cmulRS(x, y, B) =
n∑

i=1

m∑

j=1

(±)x(1)i ∧ y(2)jB(x(2)i, y(1)j) (3)

where n and m give the cardinalities of the required splits and the sign is due
to the parity of a permutation needed to arrange the factors.

A simplified algorithm of cmulRS looks as follows:

cmulRS(x,y,B) [x, y two Grassmann monomials, B - bilinear form]
begin

lstx <- list of indices from x
lsty <- list of indices from y
NX <- length of lstx
NY <- length of lsty
funx <- function maps integers 1..NX onto elements of lstx keeping their order
funy <- function maps integers 1..NY onto elements of lsty keeping their order

(this is to calculate with arbitrary indices and to compute necessary signs)
psetx <- power set of 1..NX (actually a list in a certain order)

(the i-th and (2ˆNX+1-i)-th element are disjoint adding up to the set {1..NX})
psety <- power set of 1..NY (actually a list in a certain order)

(the i-th and (2ˆNY+1-i)-th element are disjoint adding up to the set {1..NY})
(for faster computation we sort this power sets by grade)
(we compute the sign for any term in the power set)

psetx <- sort psetx by grade
psety <- sort psety by grade
pSgnx <- sum (i in psetx) (-1)ˆsum (j in psetx[i]) (psetx[i][j]-j)
pSgny <- sum (i in psety) (-1)ˆsum (j in psety[i]) (psety[i][j]-j)
(we need a subroutine for cup tangle computing the bilinear form cup(x,y,B))

begin cup
if |x| <> |y| then return 0 end if
if |x| = 0 then return 1 end if
if |x| = 1 then return B[x[1],y[1]] end if
return sum (j in 1..|x|)(-1)ˆ(j-1)*B(x[1],y[j])*cup(x[2..-1],y/y[j],B)

end cup
(now we compute the double sum, to gain efficiency we do this grade wise)
(note that there are r over NX r-vectors in psetx, analogously for psety)

13



max grade - |lstx <- convert_to_set union lsty <- convert_to_set|

res <- 0, pos1 <- 0

for j from 0 to NX (iterate over all j-vectors of psetx)
begin

F1 <- N1!/((N1-j)!*j!) (number of terms (N1 over j))
pos2 <- 0

for i from 0 to min(N2,max grade-j)



in various situations when one needs pairs of such algebras. This leads to a
relative isomorphism, which is then mathematically and physically relevant.
We just mention two places where the dotted wedge appears.

• In quantum field theory one needs to study various orderings of field oper-
ator products and/or correlation functions. In fermionic quantum field the-
ory, a normal ordered product is expressed in terms of graded-commutative
wedge products. A transition to time ordered products resp. correlation
functions is equivalent to a transition to the dotted wedge products. The
antisymmetric bilinear form in this case is called a Wightman bilinear form,
see [9–11].

• In the theory of group representations one wants to deduce characters of
subgroups of a given group by branching laws. If one derives the branching
U(n) ↓ U(n − 1) one encounters a pair of products which are related to the
transition from the undotted to the dotted wedge, see [13].

In general, one can use Hopf algebra cohomology to classify maps which con-
nect the various products. From this analysis it is known that algebra isomor-
phisms are related to 1-cocycles. The 1-cocycle condition guarantees that the
transition is an algebra homomorphism. Below, we investigate in which way
the wedge product –related to the creation operators– and the contraction
–related to the annihilation operators– is affected by the algebra isomorphism
induced by the antisymmetric part F of a bilinear form B. This analysis can
be extended to symmetric algebras [13] and to superspaces [9].

It was shown above that CLIFFORD uses the Graßmann algebra
∧

V as the
underlying vector space of the Clifford algebra C`(V, B). Thus, the Graßmann
wedge basis of monomials is the standard basis used in CLIFFORD. A general
element u in C`(V, B) can be therefore viewed as a Graßmann polynomial.

When the bilinear form B has an antisymmetric part F = −F T , it is conve-
nient to split it as B = g + F, where g is the symmetric part of B, and to
introduce the so called “dotted Graßmann basis” [6] and the dotted wedge
product ∧̇. The original Graßmann basis will be referred to here as the “un-
dotted Graßmann basis”. In CLIFFORD, the wedge product is given by the
procedure wedge and &w while the dotted wedge product is given by dwedge

and &dw.

According to the Chevalley definition of the Clifford product &c, we have

x &c u = x B u + x &w u = LC(x, u, B) + wedge(x, u) (4)

for a 1-vector x and an arbitrary element u of C`(B). As before, LC(x, u, B)
denotes the left contraction of u by x with respect to the bilinear form B.

15



However, when B = g + F then

x B u = LC(x, u, B) = x g u + x F u = LC(x, u, g) + LC(x, u, F ) (5)

and

x &c u = LC(x, u, B) + x &w u (6)

= LC(x, u, g) + LC(x, u, F ) + x &w u (7)

= LC(x, u, g) + dwedge[F ](x, u) = LC(x, u, g) + x &dw u (8)

where x &dw u = x &w u + LC(x, u, F ). That is, the wedge and the dotted
wedge “differ” by the contraction term(s) with respect to the antisymmetric
part F of B. This dotted wedge &dw can be extended to elements of higher
grades. Its properties are discussed next.

4.2 Indexing dwedge and &dw

Procedure dwedge (and its infix form &dw) requires an index which can be
a symbol or an antisymmetric matrix. That is, dwedge computes the dotted
wedge product of two Graßmann polynomials and expresses its answer in the
undotted basis. Special procedures exist which convert polynomials between
the undotted and dotted bases. When no index is used, the default is F :
> dwedge[K](e1+2*e2we3,e4+3*e1we2);&dw(ei+2*ejwek,ei+2*ejwek);

−(−K1, 4 + 6 K2, 3 K1, 2) Id − 6 K1, 2 e2we3 − 6 K2, 3 e1we2 − 2 K2, 4 e3+

2 K3, 4 e2 − 3 K1, 2 e1 + e1we4 + 2 e2we3we4

4 eiwejwek − 4 Fi, k ej + 4 Fi, j ek − 8 Fj, k ejwek − 4 Fj, k
2 Id

Observe that conversion from the undotted wedge basis to the dotted wedge
basis using antisymmetric form F and dwedge[F] are related through the fol-
lowing convert function:

dwedge[F ](e1, e2, ..., en) = convert(e1we2w...wen, wedge to



C`(B)∧ C`(B)∧̇

wedge to dwedge

dwedge



Here u



Now we map the convert function onto this basis to get the dotted wedge
basis:
> d_bas:=map(convert,w_bas,wedge_to_dwedge,F);
> test_wbas:=map(convert,d_bas,dwedge_to_wedge,-F);

d bas := [Id , e1 , e2 , e3 , e1we2 + F1, 2 Id , e1we3 + F1, 3 Id , e2we3 + F2, 3 Id ,

e1we2we3 + F2, 3 e1 − F1, 3 e2 + F1, 2 e3 ]

test wbas := [Id , e1 , e2 , e3 , e1we2 , e1we3 , e2we3 , e1we2we3 ]

Notice that only the unity 1 and the one vector basis elements ei remain



C`(B)∧ ⊗ C`(B)∧ C`(B)∧ ⊗ C`(B)∧̇

C`(B)∧ C`(B)∧̇

1 ⊗ (. . .)F

B B

(. . .)−F

Diagram



procedure cmul that takes a bilinear form as its index. As an example, we will use
two most general elements u and v in

∧
V when dim V = 3. Most output will be

eliminated.
> u:=add(x.k*w_bas[k+1],k=0..7):v:=add(y.k*w_bas[k+1],k=0..7):
We can then define in

∧
V a Clifford product cmul[g] with respect to the symmetric

part g and another Clifford product cmul[B] with respect to the entire form B :
> cmulg:=proc() return cmul[g](args) end proc:
> cmulB:=proc() return cmul[B](args) end proc:
Thus, we are ready to perform computations around our next commutative diagram,
however most output will be eliminated to save space.

C`(g)∧ ⊗ C`(g)∧ C`(g)∧̇ ⊗ C`(g)∧̇

C`(g)∧ C`(g)∧̇

(. . .)F ⊗ (. . .)F

cmul[g] cmul[B]

(. . .)−F

Diagram 5. Clifford multiplications cmul[g] and cmul[B] w.r.t. dotted and undotted
basis.

First, we compute the Clifford product cmul[g](u, v) in C`(g) in undotted Graß-
mann basis.
> uv:=cmulg(u,v): #Clifford product w.r.t. g in Cl(g) in wedge basis
Now, we convert u and v to uF and vF , respectively, expressed in the dotted wedge
basis:
> uF:=convert(u,wedge_to_dwedge,F):vF:=convert(v,wedge_to_dwedge,F):
We now compute the Clifford product of uF and vF in C`(B) in the dotted wedge
basis,
> uFvF:=cmulB(uF,vF): #Clifford product in Cl(B) in dwedge basis
convert back the above result back to the undotted wedge basis:
> uv2:=convert(uFvF,dwedge_to_wedge,-F): #convert result dwedge->wedge
and verify that the results are the same:
> simplify(uv-uv2); #show equality!

0

Thus, we have shown that the following identity involving cmul[g] and cmul[B] is
true (at least when dim V = 3). 11 The result is folklore, and may be found e.g. in
[7,15].

(u v)g = u &cg v = (uF &cB vF )−F = ((uF vF )B)−F (11)

This shows that the Clifford algebra C`(g) of the symmetric part g of B using
the undotted exterior basis is isomorphic, as an associative algebra, to the Clifford
algebra C`(B) of the entire bilinear form B = g + F spanned by the dotted wedge

11 Here, (u v)g is the Clifford product with respect to g while uF &cB vF and
(uF vF )B are the Clifford products with respect to B, that is, in C`(g) and C`(B),
respectively.
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basis if the antisymmetric part F of B is exactly the same as F used to connect the
two bases.

(. . .)F ∈ HomAlg(C`(g), C`(B)), B = g + F

4.7 Reversion in dotted and undotted bases

We proceed to show that the expansion of the Clifford basis elements into the dotted
or undotted exterior products has also implications for other well known operations
such as the Clifford reversion anti-automorphism ˜ : C`(B) → C`(B), uv 7→ ṽũ,
which preserves the grades in

∧̇
V [but not in

∧
V unless B is symmetric.] Only

when the bilinear form is symmetric, we find that the reversion is grade preserving,
otherwise it reflects only the filtration: That is, reversed elements are in general
sums of terms of the same and lower degrees.
>



> map(reversion,cbas,B);

[Id , e1 , e2 , e3 , −e1we2 − 2 F1, 2 Id , −e1we3 − 2 F1, 3 Id , −e2we3 − 2 F2, 3 Id ,

−2 F2, 3 e1 + 2 F1, 3 e2 − 2 F1, 2 e3 − e1we2we3 ]
If instead of B we use a symmetric matrix g = gT (or the symmetric part of B),
then
> map(reversion,cbas,g);

[Id , e1 , e2 , e3 , −e1we2 , −e1we3 , −e2we3 , −e1we2we3 ]

Convert now e1 ∧ e2 to the dotted basis to get e1 ∧̇ e2 = e1W e2 :
> convert(e1we2,wedge_to_dwedge,F);

e1We2

Apply reversion to e1W e2 with respect to F to get the reversed element in the
dotted basis:
> reversed_e1We2:=reversion(e1We2,F);

reversed e1We2 := −e1we2 − F1, 2 Id

Observe, that the above element is equal to the negative of e1W e2 just like reversing
e1we2 with respect to the symmetric part g of B :
> reversed_e1We2+e1We2;

0

Finally, convert reversed e1W e2 to the undotted standard Graßmann basis to get



C`(X)∧ ⊗ C`(X)∧ C`(X)∧

C`(X)∧ ⊗ C`(X)∧

C`(X)∧ ⊗ C`(X)∧ C`(X)∧

cmul[X]

reversion[X] ⊗ reversion[X]

switch

reversion[X]

cmul[X]

Diagram 7. Relation between the reversion[X] of type X∈{g,F,B} with the corre-
sponding Clifford multiplication cmul[X]. The map called switch is the ungraded
switch of tensor factors, that is, switch(A ⊗ B) = B ⊗ A.

5 Conclusions

This paper continues with the second part [5] about BIGEBRA where further aims
and outlooks for the future applications of CLIFFORD and BIGEBRA are given.

Appendix A: Code of cmulNUM

Here is a shortened code of the recursive procedure cmulNUM.

cmulNUM(a1,a2,B) [a1, a2 - two Grassmann monomials, B - name of bilinear form]
begin
if nargs <>3 then error ”exactly three arguments are needed” end if
if has(0,map(simplify,[a1,a2])) then return 0 end if
if a2=‘Id‘ then return a1 end if
if a1=‘Id‘ then return a2 end if

then returna2=‘Id‘

8 6[(end)-85(if)33(de)-341(of)-397gs



p1 <- substring(a1,1..(3*N-4))
p2 <- procname(x,a2,B)
S <- clibilinear(p1,p2,procname,B)

-add((-1)ˆ(i)*coB*nameB[L[-i],L[-1]]*
procname(makeclibasmon(subs(L[-i]=NULL,L[1..-2])),a2,B),i=2..N)

return reorder(simplify(S))
end cmulNUM
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