
DEPARTMENT OF MATHEMATICS
TECHNICAL REPORT

MATHEMATICS OF CLIFFORD -
A MAPLE PACKAGE FOR CLIFFORD

AND GRASSMANN ALGEBRAS
(REVISED AUGUST 2004)

RAFAL ABLAMOWICZ

AND

BERTFRIED FAUSER

DECEMBER 2002

No. 2002-4

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505

categorial sense ‘for free’– an algebra structure, the Clifford algebra C`(V, Q).
While in a conventional vector calculus one makes a good use of the vector
space structure, one does not have yet a vector algebra since vector multipli-
cation is missing. Having established a Clifford algebra structure provides one

cursive evaluation many superfluous terms appear that later cancel out at the
next recursive call. When the bilinear form is sparse numeric, many branches
of the recursion are cut out by Maple quite early due to automatic evaluation
that takes precedence over the recursion. In this case, the superfluous terms
disappear and are not passed on to the next recursive step. However, in the
symbolic case, in general, all these terms might be non-zero which prevents
fast completion of the recursion. Fortunately, Hopf combinatorial methods free
of the drawbacks of the recursion can also be applied and have been encoded
in cmulRS. Thus, the two ways to evaluate the Clifford product in CLIFFORD

have emerged.

We introduce the Chevalley deformation and the Clifford map to explain the
algorithm used in cmulNUM. The Clifford map γx is defined on u ∈ ∧

V as

(i) γx(u) = LC(x, u, B) + wedge(x, u) = x B u + x ∧ u
(ii) γxγy = γx∧y + B(x, y)γ1

(iii) γax+by = aγx + bγy

where x, y ∈ V (see, for example, [19]). One knows how to compute with the
wedge x∧u and the left contraction x B u with respect to the bilinear form B
(in CLIFFORD, the left contraction B is given by the procedure LC(x, u, B)).
Following Chevalley, the left contraction has the following properties:

(i) x B y = B(x, y)
(ii) x B (u ∧ v) = (x B u) ∧ v + û ∧ (x B v)
(iii) (u ∧ v) B w = u B (v B w)

where x ∈ V, u, v ∈ ∧
V and û is the Graßmann grade involution. Hence we

can use the Clifford map γx (Chevalley deformation of the Graßmann algebra)
to define a Clifford product of a one-vector x and a multivector u as

xu = x B u + x ∧ u.

Analogous formula can also be given for a right Clifford map using the right
contraction B implemented as the procedureu

(e1 ∧ e2) &c (e3 ∧ e4) = (e1 &c e2) &c (e3 ∧ e4) − B(e1, e2)1 &c (e3 ∧ e4)

= e1 &c (B(e2, e3)e4 − B(e2, e4)e3 + e2 ∧ e3 ∧ e4)

−B(e1, e2)1 &c (e3 ∧ e4)

and a second recursion of the process gives now

= B(e2, e3)B(e1, e4) − B(e2, e4)B(e1, e3) + B(e2, e3)(e1 ∧ e4)

−B(e2, e4)(e1 ∧ e3) + B(e1, e2)(e3 ∧ e4) − B(e1, e3)(e2 ∧ e4)

+B(e1, e4)(e2 ∧ e3) + e1 ∧ e2 ∧ e3 ∧ e4 − B(e1, e2)(e3 ∧ e4)

with the bolded terms cancelling out. Note that the last term in the r.h.s. was
superfluously generated in the first step of the recursion.

The Clifford product can be derived from the above recursion by linearity and
associativity. The induction starts with a left factor of grade one or grade zero
which is trivial, i.e., 1 &c ea ∧ . . .∧ eb = ea ∧ . . .∧ eb. In the case when the left
factor is of grade one, we use the Clifford product expressed by the Clifford
map of Chevalley, i.e., ea &c eb ∧. . .∧ec = ea B (eb ∧. . .∧ec)+ea∧eb ∧. . .∧ec.
We make a complete induction in the following way: If the left factor is of
higher grade, say n, one application of the recursion yields Clifford products
where the new left factor is of grade either n − 1 or n − 2, hence the recursion
stops after at most n − 1 steps.

A disadvantage of the recursive approach is that additional terms are pro-
duced by shifting Graßmann wedge products into Clifford products in order
to swap one factor to the right. While these terms eventually cancel out, their
computation increases unnecessarily the total computing time. More impor-
tantly, they may easily exhaust any computer memory available and prevent
Maple from completing the computation of the product.

An advantage of the recursive approach is realized when the bilinear form B is
numeric and sparse, that is, with many zeros. In this case, after each recursive

requirement is that every such pair multiplies back to the input x when the
dual operation of multiplication is applied, i.e., x(1)i ∧ x(2)i = x for each i-
th pair. The ‘cup’ like part of the tangle decorated with B∧ is the bilinear
form B on the generating space V extended to the whole Graßmann algebra:
It is a map B∧ :

∧
V × ∧

V → k with B : V × V → k evaluating to B(x, y)
on vectors in V . Hence, cmulRS computes the Clifford product on Graßmann
basis monomials x and y for the given B, which is later extended to Clifford
polynomials by bilinearity, as follows:

cmulRS(x, y, B) =
n∑

i=1

m∑

j=1

(±)x(1)i ∧ y(2)jB(x(2)i, y(1)j) (3)

where n and m give the cardinalities of the required splits and the sign is due
to the parity of a permutation needed to arrange the factors.

A simplified algorithm of cmulRS looks as follows:

cmulRS(x,y,B) [x, y two Grassmann monomials, B - bilinear form]
begin

lstx <- list of indices from x
lsty <- list of indices from y
NX <- length of lstx
NY <- length of lsty
funx <- function maps integers 1..NX onto elements of lstx keeping their order
funy <- function maps integers 1..NY onto elements of lsty keeping their order

(this is to calculate with arbitrary indices and to compute necessary signs)
psetx <- power set of 1..NX (actually a list in a certain order)

(the i-th and (2ˆNX+1-i)-th element are disjoint adding up to the set {1..NX})
psety <- power set of 1..NY (actually a list in a certain order)

(the i-th and (2ˆNY+1-i)-th element are disjoint adding up to the set {1..NY})
(for faster computation we sort this power sets by grade)
(we compute the sign for any term in the power set)

psetx <- sort psetx by grade
psety <- sort psety by grade
pSgnx <- sum (i in psetx) (-1)ˆsum (j in psetx[i]) (psetx[i][j]-j)
pSgny <- sum (i in psety) (-1)ˆsum (j in psety[i]) (psety[i][j]-j)
(we need a subroutine for cup tangle computing the bilinear form cup(x,y,B))

begin cup
if |x| <> |y| then return 0 end if
if |x| = 0 then return 1 end if
if |x| = 1 then return B[x[1],y[1]] end if
return sum (j in 1..|x|)(-1)ˆ(j-1)*B(x[1],y[j])*cup(x[2..-1],y/y[j],B)

end cup
(now we compute the double sum, to gain efficiency we do this grade wise)
(note that there are r over NX r-vectors in psetx, analogously for psety)

13

max grade - |lstx <- convert_to_set union lsty <- convert_to_set|

res <- 0, pos1 <- 0

for j from 0 to NX (iterate over all j-vectors of psetx)
begin

F1 <- N1!/((N1-j)!*j!) (number of terms (N1 over j))
pos2 <- 0

for i from 0 to min(N2,max grade-j)

in various situations when one needs pairs of such algebras. This leads to a
relative isomorphism, which is then mathematically and physically relevant.
We just mention two places where the dotted wedge appears.

• In quantum field theory one needs to study various orderings of field oper-
ator products and/or correlation functions. In fermionic quantum field the-
ory, a normal ordered product is expressed in terms of graded-commutative
wedge products. A transition to time ordered products resp. correlation
functions is equivalent to a transition to the dotted wedge products. The
antisymmetric bilinear form in this case is called a Wightman bilinear form,
see [9–11].

• In the theory of group representations one wants to deduce characters of
subgroups of a given group by branching laws. If one derives the branching
U(n) ↓ U(n − 1) one encounters a pair of products which are related to the
transition from the undotted to the dotted wedge, see [13].

In general, one can use Hopf algebra cohomology to classify maps which con-
nect the various products. From this analysis it is known that algebra isomor-
phisms are related to 1-cocycles. The 1-cocycle condition guarantees that the
transition is an algebra homomorphism. Below, we investigate in which way
the wedge product –related to the creation operators– and the contraction
–related to the annihilation operators– is affected by the algebra isomorphism
induced by the antisymmetric part F of a bilinear form B. This analysis can
be extended to symmetric algebras [13] and to superspaces [9].

It was shown above that CLIFFORD uses the Graßmann algebra
∧

V as the
underlying vector space of the Clifford algebra C`(V, B). Thus, the Graßmann
wedge basis of monomials is the standard basis used in CLIFFORD. A general
element u in C`(V, B) can be therefore viewed as a Graßmann polynomial.

When the bilinear form B has an antisymmetric part F = −F T , it is conve-
nient to split it as B = g + F, where g is the symmetric part of B, and to
introduce the so called “dotted Graßmann basis” [6] and the dotted wedge
product ∧̇. The original Graßmann basis will be referred to here as the “un-
dotted Graßmann basis”. In CLIFFORD, the wedge product is given by the
procedure wedge and &w while the dotted wedge product is given by dwedge

and &dw.

According to the Chevalley definition of the Clifford product &c, we have

x &c u = x B u + x &w u = LC(x, u, B) + wedge(x, u) (4)

for a 1-vector x and an arbitrary element u of C`(B). As before, LC(x, u, B)
denotes the left contraction of u by x with respect to the bilinear form B.

15

C`(B)∧ C`(B)∧̇

wedge to dwedge

C`(B)∧ ⊗ C`(B)∧ C`(B)∧ ⊗ C`(B)∧̇

C`(B)∧ C`(B)∧̇

1 ⊗ (. . .)F

B B

(. . .)−F

Diagram

[10] Fauser, B.: On an easy transition from operator dynamics to generating
functionals by Clifford algebras, J. Math. Phys. 39 (1998) 4928–47 (Preprint
hep-th/9710186)

[11] Fauser, B.: Clifford geometric parameterization of Wick normal-ordering,
J. Phys. A: Math. Gen. 34 (2001) 105–15

[12] Fauser, B.: A Treatise on Quantum Clifford Algebras (Habilitationsschrift,
Universität Konstanz, Konstanz, 2002)

[13] Fauser, B., and Jarvis, P.D.: A Hopf laboratory for symmetric functions,
J. Phys. A: Math. Gen. 37 (2004) 1633–1663

[14] Helmstetter, J.: Algèbres de Clifford et algèbres de Weyl, Cahiers Math 25
(1982)

[15] Helmstetter, J.: Monöıdes de Clifford et déformations d’algèbres de Clifford,
J. of Alg. 111(1)

