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Abstract
"There are no proofs in mathematics education."2  While this is true, claims are made in
mathematics education research and evidence is provided for them.  In this talk, I will
explore the nature of such research, the kinds of claims and evidence, and what such
research might have to offer teachers of mathematics, especially at the undergraduate
level.  Along the way, I will point out differences between the ways research is done in
the two fields.

The above title is meant to be both provocative and descriptive.  While I will talk
about how research in the two fields -- mathematics and mathematics education -- differs,
I would like to note, at the outset, something that mathematicians and mathematics
education researchers have in common -- a love of mathematics and a desire that more
people (especially our students) learn to love, appreciate, and work with mathematical
ideas flexibly.  That said, there is also much that separates the two fields that could
possibly lead to some misunderstandings of the aims and methods of those engaged in
mathematics education research.

Having obtained a Ph.D. in mathematics and published several papers in my field
(semigroups), I became increasingly interested in the problems my students were having.
As a result, some fifteen years ago, I decided to take mathematics education at the
undergraduate level as a serious research commitment.  Consequently, I feel I have a
"foot in both camps" and can understand and empathize with both.  Indeed, many
mathematicians I know seem to consider me a "math ed person" and a number of
mathematics education researchers consider me a mathematician.

While much of what I have to say will be about research in mathematics
education generally (i.e., at all levels, K-16+), many of the examples, and some of my
remarks, will apply specifically to research in mathematics education at the
undergraduate level, sometimes abbreviated as RUME.

                                                          
1 This paper was written in preparation for the author's AWM-MAA Invited Address at the MathFest in
Burlington, Vermont, August 3, 2002.  This address is given annually by the recipient of AWM's Louise
Hay Award for Contributions to Mathematics Education.  For more information on this award, see
http://www.awm-math.org/hayaward.html.
2 This statement has been attributed to Henry Pollak by Schoenfeld (2000, 2001).
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What Mathematics Education Research Is and Is Not

A number of mathematics education researchers have published articles for the
mathematics community describing the field; these have appeared in such places as
Notices of the AMS and the College Mathematics Journal (Artigue, 1999,  2001;
Schoenfeld, 1994, 2000, 2001; Selden & Selden, 1993, 2001; see also McKnight, Magid,
Murphy, & McKnight, 2000, or Niss, 1999).  These articles have provided inspiration for
what follows, but the particular perspective expressed here is my own.

Describing, much less defining, the nature of mathematics education research is a
daunting, virtually impossible, task.  Indeed, a similar thing might be said about
mathematics.  When mathematicians were surveyed (Mura, 1993, 1995) and asked, "How
would you define mathematics?", 33% replied, "I wouldn't,"  a view I sympathize with.
Still I will try to give some idea of the nature of research in mathematics education, the
kinds of questions asked, and the kinds of answers, or partial answers, provided.

To describe a concept or idea, it is often best to provide both examples and
nonexamples -- to say what it is and what it is not.  I begin with the later.

What mathematics education research is not.  It is not curriculum development
per se, although it may involve developing some bits of curricula. It is not descriptions of
interesting courses one has developed, although mathematics education research may
involve the description of some teaching.  Likewise, it is not writing a new textbook,
developing an online course, or implementing a new way of teaching, although
sometimes new/revised courses or pedagogies may come about as a result of research.  It
is not the development of novel assessment procedures, although novel/interesting tasks
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calculus course or a traditional version, one would use a qualitative research method such
as individual in-depth task-based interviews (Roddick, in press).

While researchers rarely write about how they decide on their data collection and
analysis methods, occasionally one gains such insights from texts on research methods.
For example, when Susan Pirie and Rolph Schwarzenberger wanted find out whether, and
how, pupil-pupil discussion aided mathematical understanding, they considered a variety
of data collection methods finally settling on audio-recording and taking notes -- from
across the room -- as the least intrusive.  For their analysis, after first considering
ethnomethodology and conversational analysis, which focus on the organization of the
talk, and sociolinguistics, which focuses on how social factors affect talk, they finally
settled on discourse analysis as the most appropriate for the mathematical aspects of the
pupils' talk (Pirie, 1998).

 Some examples from my own work.  In a series of three studies, John Selden and
I investigated calculus students' problem-solving abilities.  For the first study, we
developed five moderately non-routine first calculus problems, administered them to paid
volunteer C students as a test, complete with prizes for the best papers.  The result, much
to our surprise, was that not one student could solve a single problem completely, despite
many of them currently being enrolled in Calculus II (Selden, Mason, & Selden, 1989).
It then occurred to us that perhaps the students did not have the basic calculus skills
needed to solve the non-routine problems.  We thus devised a routine test consisting of
precisely those calculus skills we considered necessary to solve our non-routine
problems.  Under similar volunteer testing conditions, we gave A and B students the
same non-routine test, followed by this routine test.  The most striking result was that
only 9% of the problems were completely solved by these students, while having good
calculus skills (Selden, Selden, & Mason, 1994).

We then decided to investigate the "folk theorem" that one really learns the
mathematics of a given course in a subsequent course that uses it.  Consequently, under
similar conditions, we tested students who had taken all three semesters of calculus and
were midway through a differential equations course.  This time we got 14% completely
correct solutions (Selden, Selden, Hauk, & Mason, 2000).  We concluded that these
students could not access their knowledge during problem solving.  It may be that, when
client disciplines, such as engineering, lament that many students cannot work applied
problems, it is really the novelty that perplexes them.

In a more recent study, we investigated whether mathematics and secondary
mathematics education majors at the beginning of a transition course could validate (i.e.,
check the correctness of) similar students' "proofs" of the elementary number theory
theorem:  



5

read a particular proof the night before in order to understand it (Selden & Selden, in
press).

What Kinds of Questions Are Asked in Mathematics Education Research?

One can study an individual student, or pair of students, learning some piece of
mathematics (a cognitive perspective).  Or, one can study the interactions within a
classroom, or within the broader school culture that do, or do not, promote the learning of
mathematics (a socio-cultural perspective).  One can also coordinate these two
perspectives, trying to understand how both psychological and social factors are
involved.

In the case of individual cognition, one wants to know how students come to
understand aspects of mathematics or how they develop effective mathematical
practices, good problem-solving skills, or the ability to generate reasonable conjectures
and to produce proofs. What goes on in students' minds as they grapple with mathematics
and how might we influence that positively? More specifically, consider the difficulties
that students have with the concept of limit. Does the everyday notion of speed limit
as a bound present a cognitive obstacle? Does the early introduction of monotone
increasing sequences constitute a didactic obstacle? Are there some, as yet neglected,
everyday or school-level conceptions that university mathematics teachers might
effectively build on? What is the influence of affect, ranging from beliefs through
attitude to emotion, on effective mathematical practice? What roles do intrinsic and
extrinsic motivational factors play?

From a social perspective, whether of a single classroom or some broader
community, one seeks information on how social interactions affect the group as well
as the individuals involved. For example, how might one change the classroom culture
so students came to view mathematics, not as passively received knowledge, but as
actively constructed knowledge? Or, how might one restructure an entire curriculum
to achieve this effect? What are the effects of various cooperative learning strategies
on student learning? What kinds of interactions are most productive? Are some
students advantaged while others are disadvantaged by the introduction of cooperative
learning? Which students succeed in mathematics? Which students continue in
mathematics and why? What is the effect of gender, race, or social class upon
success in mathematics? In coordinating the psychological and social perspectives,
any of the above questions might be asked, along with inquiry into the relationship
between the two perspectives. For example, how does an individual's contribution
affect a whole class discussion and conversely?   (Selden & Selden, 2001, p. 237)

Answering the above kinds of questions requires labor-intensive, qualitative studies,
usually with small numbers of students.

Yet, there are other interesting kinds of questions that might be asked and
answered using more quantitative studies and relatively large numbers of students.  There
are enormous cross-national studies like the Third International Mathematics and Science
Study, TIMSS, that can keep researchers busy for years (e.g., Schmidt, McKnight, &
Raizen, 1996; see also http://ustimss.msu.edu/).  But there are also useful questions
regarding affect, beliefs, motivation, and other topics, that one can answer using
questionnaire data.  For example, to what extent do U.S. college students' values and
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beliefs about mathematics and mathematics learning resemble those of their instructors?
One such study is currently being considered for publication.
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flawlessly by hand.  It might, however, advise us on the extent to which our chosen
curricula, once implemented, have succeeded in attaining our goals.

What research can tell us.  Mathematics education research does provide
empirical results about what students and teachers do, or do not, know and understand.  It
can include the design, implementation, and study of the effects of specially designed
curricula; French researchers refer to this as didactic engineering.  (A sampling of some
of these empirical results is given below).  More recently, there have been studies of how
mathematics is used in the workplace by automobile workers, nurses, bankers, biologists,
and other scientists (Smith, 1999;  Hoyles, Noss, & Pozzi, 2001; Noss & Hoyles, 1996;
Smith, Haarer, & Confrey, 1997; Roth, 1999).

However, perhaps more importantly, mathematics education research provides us
with ideas/concepts and the corresponding words to talk with.  I am not
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Epistemological,4 cognitive, and didactic obstacles.  Another set of ideas that has
proved to have powerful explanatory power is that of various kinds of obstacles.
 

When applied to the learning of mathematics, these refer, respectively, to
obstacles that arise from the nature of particular aspects of mathematical
knowledge, from an individual's cognition about particular mathematical
topics, or from particular features of the mathematics teaching. An obstacle
is a piece of, not a lack of, knowledge, which produces appropriate
responses within a frequently experienced, but limited context, and is
not generalizable beyond it (Brousseau, 1997). Using the historical
development of function as a guide, it has been found that one
epistemological obstacle that students need to overcome is the idea
of function as expression, just as was the case with Euler (Sierpinska, 1992).
(Selden & Selden, 2001, p. 240-241).

In making the transition from high school to university mathematics, students
frequently encounter new ways of conceptualizing previously well-known concepts --
ways that can conflict with well-honed prior mathematical practices -- causing them
considerable difficulty.  Such didactic obstacles, often require students to make quite
difficult reconstructions of their mathematical knowledge.  For example, in high school
geometry, the tangent line to a circle is often defined to be that unique straight line that
touches the circle at just one point and is perpendicular to the radius at the point of
contact.  However, upon coming to calculus, the tangent to a function at a point is defined
as the limit of approximating secant lines, and somewhat later, as the line whose slope is
given by the value of the derivative at that point.  Research in France by Castela (as
reported in Artigue, 1992, p. 209-210) found that many of the 372 secondary students
questioned, after having studied analysis (i.e., calculus) for a year, had great difficulty
determining from a graph whether a given line was tangent to a particular function at an
inflection point or a cusp.

Another example is provided by the treatment of equality in analysis.  Whereas in
secondary school algebra and trigonometry, students have grown used to proving that two
expressions are equal by transforming one into another using known equivalences, in
analysis one can prove two numbers a and b are equal by showing that for every 0

c 0.00hig636 a2other0  q 
476.17.6 292.32 24 13.44 re hher0  q 
4in Artig656 a TD
/F0 11.93196 T421  Tw (c>0.00hig636 re 503) Tjq 
4in ArtiF2 12  Tf
0  ,Wherea413

b



9

mathematics teacher and the mathematics students and referred to this as the didactic
contract.5
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for example, by computing x2+1 for some specific numbers, thought of as “first square
the number, then add 1.”  Subsequently, it may become possible to think in terms of
general inputs and outputs, without invoking a particular algorithm.  Later, functions may
come to be seen as objects in their own right, e.g., as things which can be acted upon, say
by a differential operator.  A great many individual concepts such as limits, sequences,
cosets, and quotient groups,  have been investigated using an action-process-object-
schema (APOS) view (see Dubinsky & McDonald, 2001).  Somewhat similarly, Sfard
(1991) has described an individual’s journey from an operational (process) to a structural
(object) conception as reification.

Often,  a single mathematical notation is used to designate both process and object
conceptions.  For example, 5+4x stands for the process of adding 5 to the product of 4
and x, as well as the result of that process.  In order to be able to deal with mathematics
flexibly, students need both the process and object views of many concepts, as well as the
ability to move between the two views when appropriate.  Concepts that can be viewed
both as processes and objects are sometimes called procepts (Tall, 1991).  Students need
our help -- in order to be aware of both process and object views and in navigating
successfully between them.

Differences and Similarities Between Research in Mathematics and Mathematics
Education

The following is a highly personal and eclectic perspective, detailing various
aspects of being in, and doing, research in both mathematics and mathematics education.
Since the most noticeable difference seems to be that there are no proofs in mathematics
education, I will begin there.

The roles of proofs, evidence, conjectures, and definitions.  Mathematicians
specialize in proofs, long deductive arguments, that establish the truth of theorems
(mathematical facts).  Mathematics education researchers rarely make long deductive
arguments, rather they look for regularities in the behaviors they observe and report their
observations and their conclusions.  These conclusions are necessarily tentative; they are
based on data collected using a variety of suitable methods.  Since the evidence (data) is
empirical, no single study can be conclusive.  One is looking for compelling evidence.
Even for a single study, whenever possible, data from several sources, such as one's own
field notes, audio- or videotapes, and interviews of participants, are compared to see
whether they all point to the same, or similar, conclusions -- a process known as
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 Mathematicians, perhaps after some initial observations, conjectures, and
experimenting with what seems interesting or important, make formal if-and-only-if
definitions that stabilize the concepts they investigate.  They work within formal systems,
whose axioms may have been inspired by the consideration of real world problems;
however, the results they deduce may, or may not, turn out to be applicable.
Mathematics education researchers, on the other hand, investigate and seek to describe
what's out there -- the learning/teaching of mathematics by actual students and teachers.
That means they are dealing with things in the world, and consequently, the definitions
they use are necessarily descriptive.

Definitions [in mathematics education research] do not have, perhaps cannot
have, mathematical precision.  (Try catching the meaning of "understanding" exactly.)
Redundancy can be useful, whereas in mathematics, it is usually avoided, possibly
because it impedes the comprehension of complex proofs.  Perhaps because of such
differences, those unfamiliar with education research occasionally dismiss as "jargon"
the introduction of concepts not easily expressible with mathematical precision.
(Selden & Selden, 1993, p. 432)
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Furthermore, the way one presents one's research for publication, in mathematics
and mathematics education, also has similarities and differences.  It seems pretty clear-
cut in mathematics whether one has established what one has claimed -- either one has
presented an error-free proof or one hasn't.  This is not to say that refereeing a
mathematics manuscript is easy, but only that value judgments of a manuscript's worth
consist of whether a result is nontrivial, nonobvious, new, and interesting to a significant
number of a journal's readers.

For mathematics education research papers, on the other hand, in addition to
asking whether the authors have addressed an interesting question, there are other
considerations.  What theoretical framework have the authors used?  Is it appropriate for
the study at hand?  Have the authors chosen an appropriate methodology?  Have they
described it in sufficient detail that readers can tell the study was carefully executed?
What claims are they making?  What evidence do they marshal in support of these
claims?  Is that evidence appropriate?  Is the data presented in a clear and understandable
way?  Have the authors drawn appropriate inferences?  Do they indicate, via a literature
review, how their work relates to that of others on the same topic?  If they give
implications for teaching, are these based upon their research and/or other results found
in the literature?  If it's a quantitative study, are the statistical methods used appropriate?
If it's a qualitative study, does it provide "thick descriptions" of the students and what was
observed?  Is enough information and detail given so the study is replicable by others?
(Cf.  Hanna, 1998; Lester & Lambdin, 1998.)

It might seem that some of these questions are matters of common sense and
unlikely to be answered negatively.  But my own experience on the Editorial Panel for
the Journal for Research in Mathematics Education, reading some 15-20 manuscripts per
year, suggests any of them can have a negative answer.  Perhaps because the nature of
mathematics education research is not well understood, and sometimes the boundary
between what is and what is not such research is somewhat fuzzy, a number of people --
mathematics teachers, mathematicians, masters students in education -- submit their
interesting ideas for classroom use or poorly thought-out studies to mathematics
education research journals.

In addition, one usually needs more reviewers (referees) for a mathematics
education research manuscript -- usually, three to five, with four quite common.  Editors
need advice on several aspects of a manuscript, especially for those which are far
removed from their own expertise.  A given paper might need reviewers with expertise in
discourse analysis, socio-cultural perspectives, semiotics, or ethnography, or if there is
significant quantitative data, in statistics -- not to mention mathematics itself.  Reviewers
(referees) not only comment on what is wrong with a paper, but also make helpful
suggestions for its improvement, especially if the recommendation is "revise, resubmit,
re-review."  If a manuscript is not research, but contains useful ideas for teaching,
reviewers generally try to suggest publications that do have an interest in such work, e.g.,
The Mathematics Teacher or PRIMUS.  If the research addresses an interesting question,
but a reviewer finds problems with the methodology, he/she may advise using the work
as a pilot study or make suggestions for further investigation.

The emphasis seems to be on ensuring that only high quality work gets published,
while at the same time encouraging the development of researchers which are in short
supply.  This contrasts with my own experience with referees in mathematics;  I found
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comments on my early papers to be direct and to-the-point, but occasionally needlessly
acerbic.  Instead of feeling welcomed as a potential future colleague, a novice researcher
might well interpret such remarks as saying, "If you can't cut it, get out."  It seems that
such attitudes towards mentoring are not dead yet in mathematics departments at some
research universities.  Recently, the chair of Berkeley's mathematics department said,
"One of our goals is to cultivate self-reliance.  Berkeley is a tough place.  Berkeley is not
a warm and fuzzy place.  Students react to this atmosphere:  Some thrive, and others
don't."6

Public perceptions of the two fields.  Mathematics, and consequently research in
mathematics, has the advantage of being considered hard and potentially useful to science
and technology; ergo to the economy.  Furthermore, the history of mathematics goes back
thousands of years, giving it a well-established pedigree.  Mathematics education
research, on the other hand, is a relatively young field, even if one goes back to work in
psychology by Thorndike (1922).  Furthermore, much of that early research, done in the
connectionist and behaviorist traditions of psychology, is in what is today referred to as
the “agricultural model” in which one class of students, just like one field of corn, is
given some treatment, while another class is considered the control group.  Such studies,
which rarely concerned what was in students' minds, have not been found to be very
useful.  It is simply not as easy to control the variables when students, rather than corn
plants, are being considered.  Thus, the current foundations of mathematics education
research can really only be traced back about as far as the cognitive science revolution of
the 60's, or even somewhat later.  This lack of a long history and the variety of existing
research paradigms may contribute to confusion about what is and is not research.  And
while mathematicians are quite often held in awe (perhaps for the wrong reasons),
mathematics education researchers sometimes feel their work is misunderstood, if not
denigrated.  It is certainly no help when some on both sides of the "math wars" call on
differing bits of research to support entrenched political points of view about the teaching
and learning of school mathematics.

Some positives and negatives of being a mathematics education researcher.
Mathematics education researchers seem to have exceptionally high service demands put
on them.  Of course, both mathematicians and mathematics educators are called on for
their share of committee work and student advising.  Beyond that, mathematicians may
occasionally be called on to do such things as coach the Putnam Prize team or assist with
school mathematics contests.  Mathematics educators, while being much fewer in number
in a department of mathematics, are often called upon to train teaching assistants, conduct
workshops for teachers, supervise student teachers, and apply for education grants (that
almost always have a large component of mostly service, with a little research "around
the edges").

Despite a few negatives to becoming a mathematics education researcher, such as
greater service demands, there are a great many positives.  If one is doing research about
undergraduates' learning, one can find many interesting, potentially researchable,
questions arising out of one's teaching.  If one listens carefully and wonders why are
students doing or saying something, and if one further assumes that they are genuinely

                                                          
6 This remark was made at an NSF VIGRE workshop after a third-year review caused Berkeley to lose its
grant (Mackenzie, 2002, p. 1390).
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engaged in sense-making, then one may be led to a researchable question, especially as so
much research remains open at the undergraduate level.  This is not to say that a few
casual observations are research, but that appropriately reformulated, they can lead to
conjectures and research questions.  Contrast this with mathematics.  It is rare, except
perhaps at a major research university, to have conjectures or research ideas arise directly
out of one's interaction with students.

Another positive is the number of currently available, and perhaps soon-to-be
available jobs, in academia.  A survey of 48 institutions with doctoral programs in
mathematics education, conducted in 1999, reported that almost 80% of then-current
faculty would be eligible for retirement in the next ten years, with 38 (of the 48)
anticipating hiring a total of approximately 75 faculty members in the next five years
(Reys, Glasgow, Ragan, & Simms, 2001).  This does not include the many other
opportunities for mathematics education researchers, in mathematics and education
departments, at other colleges and universities in the U.S.  Freshly-minted mathematics
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relationship was found. In these studies, no attempt was made to measure what the
teachers actually knew, for example, by a research-designed test or task-based interviews.
At the time, Begle concluded, somewhat too hastily in retrospect, that "the effects of a
teacher's subject matter knowledge . . . seem to be far less (emphasis added) powerful
than most of us realized.  . . . Our attempts to improve mathematics education would not
profit from further studies of teachers."  (School Mathematics Study Group, NLSMA
Report, 1972; Begle, 1979; as cited in Fennema & Franke, 1992, p. 148)

Yet, subsequent studies of teachers' mathematical knowledge have proved
informative.  For example, an in-depth report of one senior preservice K-8 teacher who
had completed her first three years as a mathematics major, showed that despite wanting
to teach for both procedural and conceptual  knowledge, she could not give conceptual
explanations for common middle school topics, e.g., she had no conceptual explanation
of pi and did not know its relevance to the circumference and area of a circle (Eisenhart,
Borko, Underhill, Brown, Jones, & Agard, 1993).  Thus, it would seem that successful
completion of even a number of advanced college mathematics courses is not sufficient.
What is lacking?  Leping Ma's (1999) in-depth comparative study of 23 U.S. and 72
Chinese elementary school teachers reported that while both could do and explain
procedures, the vast majority of the Chinese teachers had a thorough conceptual
understanding of such topics as place value, whereas many of the U.S. teachers lacked
this.  Many other earlier studies (e.g., Ball, 1989; Lampert, 1990) had also found a lack of
conceptual understanding.8

What inferences might we draw?  One possibility is that undergraduate
mathematics courses aren't addressing the kinds of mathematical understanding K-8
teachers need.  Indeed, this is one of the conclusions of the National Research Council
Study, Adding It Up:  Helping Children Learn Mathematics (Kilpatrick, Swafford, &
Findell, 2001).  For details, see chapter 10, "Developing Proficiency in Teaching
Mathematics."

For both qualitative and quantitative research it is important for researchers to
explicitly describe their background assumptions, theoretical perspectives, the kinds of
research questions asked, their data collection and analysis methods, and to make a clear
argument that links their data to their conclusions.  (Cf:  Lester and Wiliam, 2000).  In
addition, in order for qualitative research with just a few students to be generalizable, the
researcher should provide "thick" descriptions of the students, the classroom situation,
the teaching, etc., so readers can judge for themselves whether their situations are
sufficiently similar to that of the researcher so as to use the results meaningfully.
Ultimately it is up to readers to determine whether the evidence presented in support of a
claim is convincing.  Of course, if an article is published in a reputable journal, a reader
has the assurance that at least the editor(s) and several reviewers have found the question
interesting, the claims made reasonable, and the evidence marshaled in support of them
convincing.  (See below, for a sampling of questions reviewers ask.)

                                                          
8 In a phenomenon inexplicable to some mathematics education researchers including one journal editor of
my acquaintance, the study reported in Leping Ma's (1999) book seems to have resonated with, and
disturbed, many U.S. mathematicians.  Whereas prior research studies reporting similar findings remain
virtually unknown to mathematicians, Ma's book has elicited numerous mentions and several reviews by
mathematicians (e.g., Howe, 1999), as well as an AMS news release (dated August 12, 1999) referring to
her study as "groundbreaking."
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It is sometimes said that qualitative research is mainly descriptive, that while it
can be useful for building theory, uncovering students' (mis-)conceptions, and suggesting
interventions, it cannot identify generalizable strategies for academic success.  Critics of
education research sometimes suggest that only rigorous controlled experimental, or
quasi-experimental, field research, often in the form of control group vs. experimental
group studies, should be used especially in making policy or curriculum decisions
(Carnine & Gersten, 2000).  They often look to medical research as the sine qua non, and
as a consequence, tend to label educational research as unscientific, especially when it is
qualitative, descriptive, and based on small numbers of students.  However, to a large
extent, studies which begin with one, or more, null hypotheses and students (somewhat)
randomly assigned to either the treatment or the control group, have been found
uninformative and have been given up within the mathematics education research
community (Schoenfeld, 1994;  Kilpatrick, 1992).  Furthermore, even in traditional
scientific disciplines, information can be gained by considering just a few cases.  For
example, recently an entirely new insect order -- the first since 1914 -- was named and
described based on just two extant museum specimens (Klass, Zompro, Kristensen, &
Adis, 2002).  Also in cognitive neuropsychology, studies of just one or two patients with
specific brain lesions can provide information on functions of small regions of the cortex.
(See for example, Dehaene, 1999, ch. 7.)

Furthermore, mathematics education research is not meant to be a "hard science"
in the sense of physics.  Results are often suggestive, and rarely predictive.  However,
information and insights are gained on a wide variety of questions using a variety of
research methods and theoretical perspectives.  Data are collected and analyzed, evidence
is provided, and arguments linking claims to that evidence are given.  Corroboration of
results by subsequent studies is important.  "Nevertheless, research in mathematics
education shares a powerful ‘pyramiding’ characteristic with other sciences; results rely
on careful observations, are separated from investigators' opinions, and are subject to
community scrutiny, so that subsequent work can be based on them (Selden & Selden,
2001, p. 238).

 A Sampling of Results from Research in Mathematics Education

The following is a potpourri of recent results, mostly from research in collegiate
mathematics education.  For topics such as functions, variable, calculus, linear algebra,
proof, problem solving, and assessment, it ranges over students' misconceptions, their
ways of thinking and working, their difficulties, the time needed to become flexible
knowers and users of mathematics, the effects of reform versus traditional calculus, and
the influences of beliefs, everyday language, gender, and the surrounding culture on the
teaching and learning of mathematics.

Variables and functions.  While secondary students' conceptions, and
misconceptions, in algebra have been quite well studied (see Kieran, 1992), less is known
about beginning college students' conceptions.  University mathematics courses usually
assume a good knowledge of high school algebra, in particular, an understanding of
variable as a general number, as a specific unknown, and as an indicator of a variable
quantity in a functional relationship.  While all these uses of variable are included in the
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secondary school curriculum, a study at a private Mexico university suggests these
distinctions are not clear to many incoming students (Trigueros & Ursini, in press).

Perhaps because functions play a central and unifying role in mathematics, there
have been many studies on what students do, and do not, know about functions at various
stages.  For example, beginning college students often have limited concept images that
include various polynomial examples, but usually not the constant function, as well as a
few other functions, such as log, exponential, and trig, that they have studied in class.

Research from France, England, Israel, Poland, and the United
States has revealed numerous common student misconceptions.
Functions are seen as rules with regularities; this is the “function
as formula” idea.  Functions are often identified with just one  representation
--  either the symbolic or the graphical.  A change in the independent
variable is seen as causing a change in the dependent variable, with the
consequence that constant functions are often not considered functions.
The vertical line test is used almost exclusively in determining
whether a given example is a function.  Even functions expressed via
polar coordinates are tested this way!  (Selden & Selden, 1993, p. 439 )

Furthermore, it seems to take even our best students until early in their graduate school
careers to exhibit a flexible knowledge of function, especially when confronted with an
unfamiliar problem.  Carlson (1998) found this when she interviewed students who had
just received A's in college algebra, second-semester honors calculus, and first-year
graduate mathematics courses.  (For more on functions, see Harel & Dubinsky, 1992;
Leinhardt, Zaslavsky, & Stein, 1990; or Thompson, 1994.)

Calculus.  Results on student learning of calculus abound.  For example,
Williams (1991) found U.S. college calculus students often had a dynamic view of limit
in terms of "approaching" which they were reluctant to give up, despite his attempts to
have them adopt a more formal view of limit by presenting them with situations to
engender cognitive conflict.  Although Williams did use the concept definition/concept
image distinction, he saw students' resistance to change as influenced by their prior
experiences with graphs of simple functions, the value they put on simple techniques for
getting answers, and on the tendency to view anomalous problems as minor exceptions to
the rules.

In a study about students' sources of conviction, college calculus students with
external sources of conviction, such as the teacher or text, viewed calculus as a collection
of facts and procedures to be memorized, claimed they neither understood nor valued the
underlying theory, and had misconceptions of limit as bound or unreachable.  In contrast,
those with internal sources of conviction, such as appeals to empirical evidence, intuition,
logic, or consistency, thought mathematics was supposed to make sense, that calculus
was logical and consistent, expressed frustration when told in class to use a formula but
not why it works, and paid a lot of attention to how formulas are derived and how
theorems are proved (Szydlik, 2000).

Students with at least two semesters of single-variable calculus were observed  as
they sketched the graphs of functions given information about their first and second
derivatives, limits, and continuity; they were also interviewed.  The students tended to
examine one interval at a time, using mostly facts about the first derivative, and found it
difficult to put together information across contiguous intervals.  Baker, Cooley, and



18



19

solving and proof; on teaching strategies that work; or on university teachers attitudes,
beliefs, and values.

Still, some hints and suggestions for teaching can be gleaned from existing
research, with more anticipated when more is known.  As Artigue has said,

. . . research carried out at the university level helps us to understand
better the difficulties in learning that our students have to face, the surprising
resistance to solutions of some of these difficulties, and the limits and
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from other government agencies, private foundations, and academic and
commercial sponsors.  The Institute would run programs to involve researchers
from all of the overlapping areas of mathematics education."  (Shure, 2001)

Finally, I'd like to put forth a suggestion that John and I have been thinking about
for a long time.  We know a number of excellent, dedicated university teachers of
mathematics who put a great deal of time and thought into developing courses, especially
single-section upper-division courses where there is great freedom to innovate.  Often
these are very successful.  However, knowledge of them disappears when the innovator
no longer teaches the course.  Such courses should be written up and preserved so they
can be replicated and others can benefit -- either in a print or on-line journal.  Our
suggestion is that the mathematician team up with a mathematics education researcher to
provide a detailed description of the course, explaining the ideas behind the innovation,
what new/different pedagogies were used, what materials were found to be effective,
what assignments/projects were undertaken by the students with what results.  But most
important of all, the authors should provide informed conjectures about why the course
was effective, using mathematics education research theory and results so informed
modifications can be made.  Although not their main purpose, such articles would
provide a published, and refereed, record of the "scholarship of teaching" for
tenure/promotion.

Thanks for listening.
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