DEPARTMENT OF MATHEMATICS TECHNICAL REPORT

VARIOUS ESTIMATIONS OF π AS DEMONSTRATIONS OF THE MONTE CARLO METHOD

JAMIE McCREARY

Under the supervision of DR. MICHAEL ALLEN

July 2001

No. 2001-4

TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

Ja *ie McC* ea , $De_{p}a$. e. \sim Ma e a b c $Te e e Tec \xrightarrow{i}_{T \to T} ica, U i e i,$ $C_{TT} e i, e, TN 38505$ $D \xrightarrow{} M D e ca_{\rm pr} ce \pi. M \cdot c$ $_{}$, 5 D $_{}$, e U , c M 5, 2. π \mathbf{f} ļ, ļ, fr π (287-212 BC). A π 22/**7**. H Ŋ_f 223/71Ŋ . L ŕÝ 1 96 ļ f Ň J, Η ļ, 400 🏌 👌 fi π 150 AD Ŋ Þ P π **¾** 15, P Ŋ Р C 35ļ, 15 , ļ, Ŋ π

1

 π

Renota

$$A_c/A_s = \frac{\pi\theta^2}{4\theta^2}$$

3.2

· · · · · · · · · · · · · · · · · · ·	100	1000	10000	100000	1000000	1000000				
E	τ 3.14	3.144	3.1359	3.14160	3.141690	3.1416010				
A	0.01	0.003	0.0001	3.0×10^{-5}	5.0×10^{-6}	2.0×10^{-7}				
f A fi f r f r f r f f										

$$\begin{array}{c} \mathbf{f} \\ \mathbf{$$

 $I_n \approx \sqrt{2\pi}$ $f_{\text{free}}, \qquad f_{\text{free}}, \quad f_{\text{$

$$\pi \approx \frac{{I_n}^2}{2}$$

3.3

	n f	100	1000	10000	100000	1000000	10000000
Ест	π	4.0	3.5	3.15	3.143	3.1398	3.14206
A . 🖹 🧏)í	2.0	0.2	0.02	0.002	0.0002	2.0×10^{-1}