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In this article we shall �nd the optimal con�gurations for n = 13. We are going
to prove the following theorem.

Theorem 1. The smallest circle C in which we can pack 13 points with mutual

distances at least 1 has radius R = (2 sin 36Æ)�1 = 1+
p
5

2
. The 13 points form the

following two con�guration as shown on Figure 1.

Figure1 . Theoptimalcon�gurationsfor

n

=13.Weshall pro

ve Theorem 1 in

t h e f o l l o w i n g w ay.
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eare going to show

t h a t i t is possible to divideC(R)in

to a smaller circle

C
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the 6 points either form a regular hexagon of unit side length with vertices on C(1),
or a pentagon with all 5 vertices on C(1) and a sixth point at O. In both cases it
is clear that there cannot be 7 points in the annulus 1 < � � R. Note that if there
are exactly 9 points in the annulus 1 < � � R, then the 13 points must form the
�rst con�guration shown on Figure 1.

Lemma 3. There cannot be exactly 5 points in C(1).

Proof. Suppose, on the contrary, that there are 5 points in C(1). Bateman and
Erd}os [1] proved that the radius of the circumcircle of 5 points with mutual distances
at least 1 is d5 = (2 cos 54Æ)�1 = 0:85 : : : . The minimal radius is realized by a
regular pentagon of unit side length. According to Lemma 2 there must be two
points P and is . 1
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Notice that r2�s2+1
R�r2 takes on its maximum if r = s = 0:77, and the maximum is

less than 1.
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Q6
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Figure 3

it may be written as a polynomial equation p(Q0; Q6) = 0 for d1. The Cartesian
coordinates of Q0 and Q6 are the following.
Q6 = (R(sin(36Æ +  )� sin ); d+R(cos(36Æ +  )� cos ));

Q0 = (0;�R cos(36Æ �  ) +
p
R2 cos2(36Æ �  )�R)

The polynomial equation is as follows.

p(Q0; Q6) = (�10 � 4
p
5)d41 + (�5 � 7

p
5)d61 + 14

p
5d81 + (55 + 13

p
5)d101 + (25 +

15
p
5)d121 + (10 + 4

p
5)d141 = 0

This equation has two roots in the [
p
2

2
; 1] interval, 0:744 : : : and 1. By direct

substitution we can check that p(Q0; Q6) < 1 in (0:7448; 1). In a similar manner we
may write d2(Q6; Q9) = 1 as a polynomial equation for d1 and check for roots in the

designated interval. Note that d(O;Q9) = R cos(36Æ� )�p(1�R2 sin2(36Æ� )).
The graph of the function d(Q6; Q9) is shown on Figure 2.

This function has no zeros in the interval [0:745; 1]. �

Lemma 6. If P9; P10; P11 2 P3OP4, then is not possible that d1 2 [
p
2=2; 0:745].

Proof. For every value of d1 there is a dm such that none of the three points
P2; P3; P4 can be closer to O than dm. We may obtain dm from the the follwing
equation.

�(d1; d1) + �(d1; d ; dOP
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Q6. Therefore the four points in C(1) must be in the con�guration shown in the
second part of Figure 1.
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