THE DENSE PACKING OF 13 CONGRUENT CIRCLES IN A CIRCLE

Ferenc Fodor March 2001 No. 2001-1

TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

THE DENSEST PACKING OF 13 CONGRUENT CIRCLES IN A CIRCLE

FERENC FODOR

ABSTRACT. The densest packings of n congruent circles in a circle are known for $n \leq 12$ and n = 19. In this paper we exhibit the densest packings of 13 congruent circles in a circle. We show that the optimal con gurations are identical to Kravitz's [11] conjecture. We use a technique developed from a method of Bateman and Erdős [1] which proved fruitful in investigating the cases n = 12 and 19 by the author [6, 7].

1. Preliminaries and Results

We shall denote the points of the Euclidean plane \mathbf{E}^2 by capitals, sets of points by script capitals, and the distance of two points by d(P,Q). We use PQ for the line through P, Q, and \overline{PQ} for the segment with endpoints P, Q. $\angle POQ$ denotes the angle determined by the three points P,O,Q in this order. C(r) means the closed disc of radius r with center O. By an annulus $r < \rho \leq s$ we mean all points P such that $r < d(P,O) \leq s$. We utilize the linear structure of \mathbf{E}^2 by identifying each point P with the vector \overrightarrow{OP} , where O is the origin. For a point P and a vector \vec{a} by $P + \vec{a}$ we always mean the vector $\overrightarrow{OP} + \vec{a}$.

The problem of finding the densest packing of congruent circles in a circle arose in the 1960s. The question was to find the smallest circle in which we can pack n congruent unit circles, or equivalently, the smallest circle in which we can place n points with mutual distances at least 1. In this article we shall find the optimal configurations for n = 13. We are going to prove the following theorem.

Theorem 1. The smallest ci cle C in which we can pack 13 points with mutual distances at least 1 has adius $R = (2 \sin 36^{\circ})^{-1} = \frac{1+\sqrt{5}}{2}$. The 13 points form the following two configu ation as shown on Figure 1.

the 6 points either form a regular hexagon of unit side length with vertices on C(1), or a pentagon with all 5 vertices on C(1) and a sixth point at O. In both cases it is clear that there cannot be 7 points in the annulus $1 < \rho \leq R$. Note that if there are exactly 9 points in the annulus $1 < \rho \leq R$, then the 13 points must form the first configuration shown on Figure 1.

Lemma 3. The *e* cannot be exactly 5 points in C(1).

P oof. Suppose, on the contrary, that there are 5 points in C(1). Bateman and Erdős [1] proved that the radius of the circumcircle of 5 points with mutual distances at least 1 is $d_5 = (2\cos 54^\circ)^{-1} = 0.85...$ The minimal radius is realized by a regular pentagon of unit side length. According to Lemma 2 there must be two points *P* and

FERENC FODOR

4

Notice that $\frac{r^2-s^2+1}{R-r^2}$ takes on its maximum if r = s = 0.77, and the maximum is less than 1. On the left hand side we can see that we decrease $(2rs)^2 - (s^2 + r^2 \{$

FIGURE 3

it may be written as a polynomial equation $p(Q_0, Q_6) = 0$ for d_1 . The Cartesian coordinates of Q_0 and Q_6 are the following.

 $Q_6 = (R(\sin(36^\circ + \psi) - \sin\psi), d + R(\cos(36^\circ + \psi) - \cos\psi));$ $Q_0 = (0, -R\cos(36^\circ - \psi) + \sqrt{R^2\cos^2(36^\circ - \psi) - R})$ The polynomial equation is as follows.

 $\begin{array}{l} p(Q_0,Q_6) = (-10 - 4\sqrt{5})d_1^4 + (-5 - 7\sqrt{5})d_1^6 + 14\sqrt{5}d_1^8 + (55 + 13\sqrt{5})d_1^{10} + (25 + 15\sqrt{5})d_1^{12} + (10 + 4\sqrt{5})d_1^{14} = 0 \end{array}$

This equation has two roots in the $\left[\frac{\sqrt{2}}{2}, 1\right]$ interval, 0.744... and 1. By direct substitution we can check that $p(Q_0, Q_6) < 1$ in (0.7448, 1). In a similar manner we may write $d^2(Q_6, Q_7) = 1$ as a polynomial equation for d_1 and check for roots in the designated interval. Note that $d(O, Q_{\tilde{x}}) = R\cos(36^\circ - \psi) - \sqrt{(1 - R^2\sin^2(36^\circ - \psi))}$. The graph of the function $d(Q_6, Q_{\bar{x}})$ is shown on Figure 2.

This function has no zeros in the interval [0.745, 1]

Lemma 6. If $P_{\mathfrak{x}}, P_{10}, P_{11} \in P_3OP_4$, then is not possible that $d_1 \in [\sqrt{2}/2, 0.745]$.

P oof. For every value of d_1 there is a d_m such that none of the three points P_2, P_3, P_4 can be closer to O than d_m . We may obtain d_m from the the following equation.

 $\phi(\mathbf{d}_1, d_1) + \phi(d_1, \mathbf{d} \mathbf{\partial} P)$ acsr

is not possible that both d_3 and d_4 are less than or equal to d_M . This

FERENC FODOR

 Q_6 . Therefore the four points in C(1) must be in the configuration shown in the second part of Figure 1.

References

[1] P. Bateman, P. Erdős, Geometrica extrema suggeste