DEPARTMENT OF MATHEMATICS TECHNICAL REPORT

THE DENSE PACKING OF 13 CONGRUENT CIRCLES IN A CIRCLE

Ferenc Fodor March 2001 No. 2001-1

TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

THE DENSEST PACKING OF 13 CONGRUENT CIRCLES IN A CIRCLE

FERENC FODOR

ABSTRACT. The densest packings of n congruent circles in a circle are known for $n \leq 12$ and $n = 19$. In this paper we exhibit the densest packings of 13 congruent circles in a circle. We show that the optimal con gurations are identical to Kravitz's [11] conjecture. We use a technique developed from a method of Bateman and Erdős [1] which proved fruitful in investigating the cases $n = 12$ and 19 by the author [6, 7].

1. Preliminaries and Results

We shall denote the points of the Euclidean plane E^2 by capitals, sets of points by script capitals, and the distance of two points by $d(P,Q)$. We use PQ for the line through P, Q, and \overline{PQ} for the segment with endpoints P, Q. $\angle POQ$ denotes the angle determined by the three points P, O, Q in this order. $C(r)$ means the closed disc of radius r with center O. By an annulus $r < \rho < s$ we mean all points P such that $r < d(P, O) \leq s$. We utilize the linear structure of \mathbf{E}^2 by identifying each point P with the vector \vec{OP} , where O is the origin. For a point P and a vector \vec{a} by $P + \vec{a}$ we always mean the vector $\vec{OP} + \vec{a}$.

The problem of finding the densest packing of congruent circles in a circle arose in the 1960s. The question was to find the smallest circle in which we can pack ⁿ congruent unit circles, or equivalently, the smallest circle in which we can place ⁿ points with mutual distances at least 1.

In this article we shall find the optimal configurations for $n = 13$. We are going to prove the following theorem.

Theorem 1. The smallest circle C in which we can pack 13 points with mutual distances at least 1 has adius $R = (2 \sin 36^\circ)^{-1} = \frac{1+\sqrt{5}}{2}$. The 13 points form the fol lowing two conguration as shown on Figure 1.

the 6 points either form a regular hexagon of unit side length with vertices on $C(1)$, or a pentagon with all 5 vertices on $C(1)$ and a sixth point at O. In both cases it is clear that there cannot be 7 points in the annulus $1 < \rho \leq R$. Note that if there are exactly 9 points in the annulus $1 < \rho \leq R$, then the 13 points must form the first configuration shown on Figure 1.

Lemma 3. The e cannot be exactly 5 points in $C(1)$.

Proof. Suppose, on the contrary, that there are 5 points in C(1). Bateman and Erdős [1] proved that the radius of the circumcircle of 5 points with mutual distances at least 1 is $a_5 = (2 \cos 34) = 0.83...$ The minimal radius is realized by a regular pentagon of unit side length. According to Lemma 2 there must be two P oof. Suppose, on the contrary, that there are 5 points in $C(1)$. Bateman and Erdős [1] proved that the radius of the circumcircle of 5 points with mutual distances at least 1 is $d_5 = (2 \cos 54^\circ)^{-1} = 0.85...$ The minimal r

4 FERENC FODOR

Notice that $\frac{r-s^2+1}{R-r^2}$ takes on its maximum if $r = s = 0.77$, and the maximum is less than 1. On the left hand side we can see that we decrease $(2rs)^{2} - (s^{2} + r^{2})$

it may be written as a polynomial equation $p(Q_0, Q_6) = 0$ for d_1 . The Cartesian coordinates of Q_0 and Q_6 are the following.

$$
Q_6 = (R(\sin(36^\circ + \psi) - \sin \psi), d + R(\cos(36^\circ + \psi) - \cos \psi));
$$

\n
$$
Q_0 = (0, -R\cos(36^\circ - \psi) + \sqrt{R^2 \cos^2(36^\circ - \psi) - R})
$$

The polynomial equation is as follows.

 $p(Q_0, Q_6) = (-10 - 4\sqrt{5})d_1^4 + (-5 - 7\sqrt{5})d_1^6 + 14\sqrt{5}d_1^8 + (55 + 13\sqrt{5})d_1^{10} + (25 + 15\sqrt{5})d_1^{12} + (10 + 4\sqrt{5})d_1^{14} = 0$

This equation has two roots in the $\left[\frac{\sqrt{2}}{2}, 1\right]$ interval, 0.744... and 1. By direct substitution we can check that $p(\mathbf{q}|\mathbf{q}|\mathbf{q}) \propto 1$ in (0:1440;4). In a similar manner we may write $a^-(Q_6,Q_{\bar{x}}) = 1$ as a polynomial equation for a_1 and check for roots in the designated interval. Note that $d(O, Q_x) = R \cos(36^\circ - \psi) - \sqrt{(1 - R^2 \sin^2(36^\circ - \psi))}$. The graph of the function $d(Q_6, Q_{\bar{x}})$ is shown on Figure 2.

This function has no zeros in the interval [0.745, 1]. \Box

Lemma 6. If P_3 , P_{10} , $P_{11} \in P_3OP_4$, then is not possible that $d_1 \in [\sqrt{2}/2, 0.745]$.

 P and P is a discrete of discrete of the three points there is a discrete of the three points P P_2, P_3, P_4 can be closer to O than d_m . We may obtain d_m from the the follwing equation.

 $\phi(\boldsymbol{d}_1, d_1) + \phi(d_1, d\boldsymbol{d})$ $\boldsymbol{\eta}$ τ /T14 1 τ

is not possible that both d_3 and d_4 are less than or equal to d_M . This

8 FERENC FODOR

 Q_6 . Therefore the four points in $C(1)$ must be in the configuration shown in the second part of Figure 1.

REFERENCES

[1] P. Bateman, P. Erdős, Geometrica extrema suggeste