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For any given bounded linear operator A on a complex
Hilbert space H, we give sufficient conditions to ensure the
existence of a bounded operator B on H such that
(i)AB + BA is of rank one, and (ii)I + exP (A)+tQ(A)B
is invertible for all x, t ∈ R where P (A) and Q(A) are
polynomials in A. Our main results will provide a justiÞca-
tion in general terms to a crucial step of the so-called
operator method used by Aden, Carl, and Schiebold [1,3]
to solve nonlinear partial differential equations like the
Korteveg-deVries(KdV), modiÞed KdV, Kadomtsev-
Petviashvili equations.

1. INTRODUCTION

In [1] Aden and Carl showed that for a given bounded linear operator A on a

Banach space E the family of operators V (x, t) := (I + L)!1eAx+A3t(AB + BA)

is a solution to the operator KdV equation Vt = Vxxx + 3V 2
x , provided the

operator B satisÞes (i) AB + BA is of rank one, and (ii) (I + L)!1 exists,

where L(x, t) := eAx+A3tB. Further, v(x, t) := tr(V (x, t))), where tr is the

continuous trace, gives a scalar solution to the scalar KdV equation vt = vxxx +

3v2
x
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equation, Kadomtsev-Petviashvili equation as well as the sine-Gordon equation.

The approach mentioned above is known as the operator method. The main idea

of the operator method can be described as follows. Given a nonlinear PDE of

soliton physics as well as a speciÞc scalar solution to the equation, the Þrst

step in the solution is to translate the given nonlinear equation to an operator

equation. Using the speciÞc scalar solution as an aid, one then searches for

a family of operator solutions to the operator equation. Having obtained the

operator solutions, the second step is to transfer the operator-valued solution
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2. PRELIMINARIES

Recall that an operator T : E → F (where E and F are Banach spaces) is

said to be of rank one if the dimension of the range of T is equal to one. It is

straightforward to verify that T is of rank one if and only if there exists a ∈ E 0

(dual of E) and y ∈ F such that T = a⊗ y, where (a⊗ y)x := a(x)y, ∀x ∈ E.

It is obvious that for any a, b ∈ E 0; x, y ∈ E, and complex number λ, we have

(i) λ(a⊗x) = a⊗λx, (ii) (a±b)⊗x = a⊗x±b⊗x, and (iii) (a⊗x)◦(b⊗y) =

b⊗ a(y)x.

The following lemmas are quite useful in the proofs of the main results of

the paper. Lemma 2.
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xt always denotes the corresponding column vector. For any square matrix A,

E(A) denotes the set of eigenvalues of A. Finally, I always stands for the identity

operator.

3. FINITE DIMENSIONAL CASE

Recall that for any h, g ∈ Cn, h ⊗ g gives a linear operator on Cn which

is deÞned as follows (h ⊗ g)x =
³ Pn

i=1 h̄ixi

´
g for each x ∈ Cn. Even though

for any h, g ∈ Cn there always exists a matrix B such that AB + BA = h ⊗ g

provided 0 /∈ E(A) + E(A) for a given A (see [1], [4], [6]), we show that a careful

choice of h and g will also ensure the invertibility of the matrix I+exP (A)+tQ(A)B
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Now we are ready to exhibit h, g ∈ Cn and an n × n matrix B as stated in

the theorem. Let B := S!1 òBS,

h := α2(s̄21, . . . , s̄2n)t + α4(s̄41, . . . , s̄4n)t + . . . + αn(s̄n1, . . . , s̄nn)t and

g := β1(q11, . . . , qn1)t + β3(q13, . . . , qn3)t + . . . + βn(q1n, . . . , qnn)t

where S = (sij) and S!1 = (qij). Notice also that S!1(α⊗ β)S = h⊗ g. Then

AB + BA = S!1 òASS!1 òBS + S!1 òBSS!1 òAS = S!1( òA òB + òB òA)S = h⊗ g.

This proves part (i) of the theorem. Since

I + exP (A)+tQ(A)B = S(I + exP (Ã)+tQ(Ã) òB)S!1

and I + exP (Ã)+tQ(Ã) òB is invertible, statement (ii) of the theorem follows.

Now we are ready to extend the above theorem to a general situation.

Theorem 3.2. Let A be any square matrix of size n such that 0 /∈ E(A)+E(A).

Then there always exist non-zero vectors h, g ∈ Cn and an n × n matrix B such

that

(i) AB + BA = h⊗ g, and

(ii) I + exP (A)+tQ(A)B is invertible for all x, t ∈ R where P (A) and Q(A)

are polynomials in A.

Proof. Let S be such a similarity transformation which reduces the matrix

A to a Jordan canonical form in which all the 1 × 1 Jordan blocks appear at

the bottom of the matrix òA. Obviously, this can always be achieved since the

Jordan canonical form is unique up to permutations of the Jordan blocks. The
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matrix òA will be as follows

ò
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we extend the above result to a more general situation by using the results of

the previous section.

Suppose

A =



A1

A2

A3

. . .

Ak

. . .


is the matrix representation of an operator on `2 in the standard basis {ej},

where Ak (k ∈ N) is a normal square matrix of size nk placed on the main

diagonal of the inÞnite matrix A and there exists a positive integer n0 such that

the size of each Ak is less than or equal to n0. All the entries of A which are not

shown are equal to zero. Assume that there exists a real number M > 0 such

that kAkk ≤ M for all k. Here kAkk is the Euclidian norm of the matrix Ak.

Also assume that all eigenvalues {µi} of A
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Proof. Obviously, the operators A, D, U and U!1 are linear. Let x ∈ `2. For

convenience we write x in cycles x = (x
(1)
1 , . . . , x

(1)
n1 ; . . . , x

(k)
1 , . . . , x

(k)
nk ; . . .), where

nk is the size of the matrix Ak, k = 1, 2, . . . . To show that A is bounded note

that Ax = (A1r1, . . . , Akrk, . . .) where rk = (x
(k)
1 , . . . , x

(k)
nk ).

Then kAxk2 =
"P

k=1

kAkrkk2. Further, by using Hölderís inequality

kAkrkk2 = |a(k)
11 x

(k)
1 + . . . + a 11xTT12 1 Tf
TT12 1 Tf
 k7/TT8 1 Tf
12 0 0 12 255.280609(0(45606 54696 1 Tf
0. 12 TT8 1 Tf
12 0 0 12 136.1206 5463010(A)]T 1 Tf
)Tj/T|12 1
)Tji(TT12 1 Tf
)Tj522 307.28 Tm
k

)(k)Tj
/TT.6286 0 TD)

2 |a
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the domain of U!1 (which is the range of U) is closed [8]. Hence, range(U)=`2.

Before proceeding further, we need two lemmas. The operators R and

S deÞned in the following lemmas are used in [3]. Even though some of the

properties of R and S are implicitly present in [3], we provide some explicit

proofs for the sake of completion.

Lemma 4.3. Let α = {αi} ∈ `2, β = {βi} ∈ `2, and let {µi} be an inÞnite

bounded sequence of positive real numbers such that ² = inf
i$N

µi > 0. Then

(i) R : `2 → L2(0,∞) deÞned by R(x1, x2, . . .)(s) =
P"

j=1 ᾱje!sµj xj is a

bounded linear operator, and

(ii) S : L2(0,∞) → `2 deÞned by S(f) = (. . . ,
R"

0 f(s)e!sµiβids, . . .) is a

bounded linear operator.

Proof. Proof of (i). Clearly, R is a linear operator. Let x = (xi) ∈ `2.

ThenÃ R"
0

|ᾱje!sµj xj |2ds

!1/2

=

Ã
|ᾱjxj |2 R"

0
e!2sµj ds

!1/2

=
|ᾱjxj |p

2µj

≤ |ᾱjxj |√
²

.

Thus

"X
j=1

kᾱje!sµj xjkL2
≤

"X
j=1

|ᾱjxj |√
²

< ∞.

Since L2(0,∞) is a Banach space and absolute convergence in a Banach space

implies convergence, it follows that
P"

j=1 ᾱje!sµj xj is convergent in L2(0,∞),

and hence R is well-deÞned. To show that R is bounded, notice that by using

the Hölderís inequality
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kR(x1, x2, . . .)kL2
=

°°° P"
j=1 ᾱje!sµj xj

°°°
L2

≤ P"
j=1 |ᾱjxj| · ke!sµj kL2

≤
"X

j=1

|ᾱjxj |√
²
≤ 1√

²

Ã "X
j=1

|αj |2
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Theorem 4.5. Let {Ak} be the sequence of normal matrices of bounded size

such that all eigenvalues {µi} of Akís are positive and constitute a bounded

sequence such that ² = inf
i$N

µi > 0. Let A : `2 → `2 be an operator constructed

as in the discussion preceding the proposition 4.1. If there is a positive real

number M such that kAkk ≤ M for all k, then there exist non-trivial vectors

h, g ∈ `2
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Thus

h(I + Kx,t)f, fi = hf, fi + hKx,tf, fi = kfk2 + hKx,tf, fi ≥ 0

Hence, −1
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g := β1(q11, . . . , qn1, . . .)t + . . . + βn(q1n, . . . , qnn, . . .)t + . . .

where U = (uij) and U!1 = (qij). Notice also that U!1(α⊗β)U = h⊗ g. Then

one checks
AB + BA = U!1DUU!1 òBU + U!1 òBUU!1DU

= U!1(D òB + òBD)U

= U!1(α⊗ β)U = h⊗ g.

This proves part (i) of the theorem. Since

I + exP (A)+tQ(A)B = U(I + exP (D)+tQ(D) òB)U!1

and I + exP (D)+tQ(D) òB is invertible, statement (ii) of the theorem follows.

The previous theorem was a special case of the operator A made up of

inÞnitely many normal matrices. What happens if all the conditions of

Theorem 4.5 are satisÞed except for the normality of matrices Ak? Thus, suppose

an operator A : `2 → `2 is given which has the following matrix representation

in the standard basis {ei}

A =



A1

A2

A3

. . .

Ak

. . .


where Ak (k ∈ N) is a square matrix of size nk placed on the main diagonal of

the inÞnite matrix A, and there exists a positive integer n0 such that the size

of each Ak is less than or equal to n0. All the entries of A which are not shown
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are equal to zero. Assume that there exists a real number M > 0 such that

kAkk ≤ M for all k. Also assume that all eigenvalues {µi} of A are positive and




