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PERFECT BINARY MATROIDS

ALLAN D. MILLS

Abstract. In this paper a definition of perfect binary matroids is considered
and it is shown that, analogous to the Perfect Graph Theorem of Lovász and
Fulkerson, the complement of a perfect matroid is also a perfect matroid.
In addition, the classes of critically imperfect graphic matroids and critically
imperfect graphs are compared.

1. Introduction

The matroid notation and terminology used here will follow Oxley [7], and only
simple graphs and matroids will be considered. Since being introduced by Berge [1],
the concept of a perfect graph has been a fruitful area of research in graph theory.
In this paper, we investigate a deÞnition of perfect binary matroids analogous to
the deÞnition of perfect graphs. Recall that a graph G is said to be perfect if
ω(H) = χ(H) for all vertex-induced subgraphs H of G. Therefore, in order to
extend the notion of a perfect graph to matroid theory, matroidal analogues for the
clique number, ω(G), and the chromatic number, χ(G), of a graph G are needed.

Since the clique number of a graph G is the maximum cardinality of a set of
vertices that induces a complete subgraph of
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chromatic number of G may be deÞned by χ(G) = min{k : χG(k) > 0}. The
characteristic polynomial (see, for example, [9, p. 120]) of a matroid M in the
variable λ, denoted p(M ; λ), generalizes the chromatic polynomial of a graph.

Definition 1.2. The critical exponent of a loopless matroid M representable over
GF (q) is deÞned by c(M ; q) = min{j ∈ N : p(M ; qj) > 0}.

Therefore the critical exponent of a simple binary matroid M is the smallest
positive integer j such that p(M ; 2j) > 0, just as the chromatic number of a graph
G is the smallest possible integer k such that χG(k) > 0. We now list several useful
facts about the critical exponent of a matroid (see, for example, [3, p. 163] or [9,
p. 129]).

Lemma 1.3. c(M ; q) = min{j ∈ N : p(M ; qk) > 0 for all integers kk
.
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2. Perfect Binary Matroids

The availability of matroidal analogues for the chromatic number and clique
number of a graph naturally leads to the following deÞnition.

Definition 2.1. A simple GF (q)-representable matroid M is perfect if ω(M |F ; q) =
c(M |F ; q) for each ßat F of M .

We shall abbreviate ω(M ; 2) and c(M ; 2) to ω(M) and c(M), respectively when
considering only binary matroids.

Example 2.2. Since ω(P G(n − 1, 2)) = c(PG(n − 1, 2)) = n and each ßat of a
projective geometry is also a projective geometry, it follows that P G(n− 1, 2) is a
perfect binary matroid.

Example 2.3. M(K4) is a perfect matroid. Since χ(K4) = 4, it follows from
Lemma 1.4 that c(M(K4)) = 2. Moreover, as K4(M K
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The analogy between projective geometries in matroid theory and complete graphs
in graph theory allows one to consider complements for simple matroids that are
uniquely representable over GF (q). If
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and ω(M2) = c(M2). On combining this with Lemma 1.7, we have that

max{ω(M1), ω(M2)} = max{c(M1), c(M2)}
= c(N)

≥ ω(N)

≥ max{ω(M1), ω(M2)}.

Hence c(N) = ω(N).
Now let F be a non-empty proper ßat of N . Then F = F1 ∪ F2 where F1 is a

ßat of M1 and F2 is a ßat of M2. Thus ω(M1|F1) = c(M1|F1) and ω(M2|F2) =
c(M2|F2). Moreover, as N |F = (M1|F1) ⊕ (M2|F2), it follows from (2.2) that
max{c(M1|F1), c(M2|F2)} = c(N |F
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3. Critically Imperfect Graphs and Matroids

Recall that an imperfect graph G is said to be critically imperfect if each of its
proper induced subgraphs is perfect.

Definition 3.1. A simple binary matroid M is critically imperfect if M is imperfect
and M |F is perfect for each proper ßat F of M .

Example 3.2. Let Cn denote a cycle on n vertices. If n is odd and exceeds three,
then, as Cn is not a two-colorable graph, c(M(Cn)) = 2. Moreover, as Cn contains
no 3-cycle as a restriction, ω(M(Cn)) = 1. Since c(M(Cn)|F ) = ω(M(Cn)|F ) = 1
for all proper ßats F of M(Cn
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Theorem 3.7. If M(G) is a critically imperfect matroid and G is not critically
imperfect as a graph, then either G ∼= K5 or G has C7 as a proper induced subgraph.

Proof. Suppose M(G) is a critically imperfect matroid, but G is not a critically
imperfect graph. Theorem 3.4(i) implies that c(M(G)) ≥ 3. Moreover, as P G(2, 2)
is an excluded minor for graphic matroids, ω(M(G)) ≤ 2. Thus c(M(G)) = 3
and ω(M(G)) = 2. Furthermore, G is 5-vertex-critical and every odd cycle of
length at least 5 has a chord. If |V (G)| = 5, then clearly G ∼= K5. Now suppose
|V (G)| > 5. As G is a 5-vertex-critical graph, it has no K5-restriction. Hence G
is an imperfect graph and it follows that G has a proper vertex-induced critically
imperfect subgraph G0 such that χ(G0) ≤ 4. If χ(G0) = 3, then Lemma 3.5 implies
that G0 is an odd cycle or the complement of an odd cycle. Now, as χ(Cn) ≥ 4 for
odd integers n ≥ 7 and C5 = C5, we deduce that G0 is an odd cycle of length at least
5. However, this contradicts the fact that G has no chordless odd cycles of length
at least 5 as induced subgraphs. Hence we may assume that χ(G0) = 4. Since G0 is
critically imperfect it has no K4-restriction. Then Lemma 3.5 implies that G0 is an
odd cycle or the complement of an odd cycle, and the fact that χ(G0) = 4 implies
that G0 is C7. Thus G is a 5-vertex-critical graph that has C7 as a proper induced
subgraph and is not critically imperfect.

It follows from the previous results that M(C7) is a perfect matroid although C7

is a critically imperfect graph. Three examples of graphs which are not critically
imperfect, have C7 as an induced subgraph, and yield critically imperfect matroids
are shown in Figure 2.




