DEPARTMENT OF MATHEMATICS TECHNICAL REPORT

PERFECT BINARY MATROIDS

Allan Mills August 1999 No. 1999-8

TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

PERFECT BINARY MATROIDS

ALLAN D. MILLS

Abstract. In this paper a definition of perfect binary matroids is considered and it is shown that, analogous to the Perfect Graph Theorem of Lovász and Fulkerson, the complement of a perfect matroid is also a perfect matroid. In addition, the classes of critically imperfect graphic matroids and critically imperfect graphs are compared.

Introduction

Perfect Binary Matroids

 $\begin{array}{c|c} & & & & & & & & \\ \hline Definition 2.1. & & GF q & & & & M & ! M | F q \\ c & M | F q & & & & & & \\ & & & & & & & M & & \\ \hline & & & & & & & & M & & \\ \hline & & & & & & & & M & & \\ \hline Example 2.2. & & & & & & & PG n - & , & n & & & \\ & & & & & & & & & & PG n - & , & \\ \hline Example 2.3. & M & K_4 & & & & & & & \\ & & & & & & & & & K_4 & & \\ & & & & & & & & & K_4 & & \\ & & & & & & & & & K_4 & & \\ \hline \end{array}$

ALLAN D. MILLS

GF q

4

5

Critically Imperfect Graphs and Matroids

G

Definition 3.1. M F		ß	M F M		Μ
Example 3.2. C _n	Cn		n c M C _n	n	Cn
ß	F	! M C _n M C _n	C	: M C _n F	! M C _n ∣F

