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Abstract

It is a well known fact from the group theory that irreducible tensor represen-
tations of classical groups are suitably characterized by irreducible representations
of the symmetric groups. However, due to their different nature, vector and spinor
representations are only connected and not united in such description.

Clifford algebras are an ideal tool with which to describe symmetries of multi-
particle systems since they contain spinor and vector representations within the
same formalism, and, moreover, allow for a complete study of all classical Lie
groups. In this work, together with an accompanying work also presented at this
conference, an analysis of q -symmetry ó for generic q ís ó based on the ordinary
symmetric groups is given for the Þrst time. We construct q -Young operators
as Clifford idempotents and the Hecke algebra representations in ideals gener-
ated by these operators. Various relations as orthogonality of representations and
completeness are given explicitly, and the symmetry types of representations is
discussed. Appropriate q -Young diagrams and tableaux are given. The ordinary
case of the symmetric group is obtained in the limit q → 1. All in all, a toolkit
for Clifford algebraic treatment of multi-particle systems is provided. The distin-
guishing feature of this paper is that the Young operators of conjugated Young
diagrams are related by Clifford reversion, connecting Clifford algebra and Hecke
algebra features. This contrasts the purely Hecke algebraic approach of King and
Wybourne, who do not embed Hecke algebras into Clifford algebras.
MSCS: 15A66; 17B37; 20C30; 81R25
Keywords: Clifford algebras of multivectors, Clifford algebra representations,
spinors, spinor representations, symmetric group, Hecke algebras, q -Young op-
erators, q -Young diagrams and tableaux, q -deformation, multi-particle states,
internal symmetries.
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natural idea to bring the symmetric group and its deformation, the Hecke algebra, into
the Clifford formalism. Furthermore, the symmetric group is the Coxeter group of the



spaces which appear as a natural outcome of the embedding of the symmetric group
and its representations can then be looked at as multiparticle spinor states. However,
these might not be spinors of the full Clifford algebra.

In order to be as general as possible, we give not only the representations of the
symmetric group but also of the Hecke algebra HF(n, q). The Hecke algebra is the
generalization of the group algebra of the symmetric group by adding the requirement
that transpositions ti of adjacent elements i, i + 1 are no longer involutions si. We set
t2
i = (1− q)ti + q which reduces to s2

i = 1 in the limit q → 1.
Hecke algebras are ëtruncatedí braids, since a further relation (see (3) below) is added

to the braid group relations as in [4]. A detailed treatment of this topic with important
links to physics may be found, for example, in [20, 34] and in the references of [11].

The deÞning relations of the Hecke algebra will be given according to Bourbaki [8].
Let < 1, t1, . . . , tn > be a set of generators which fulÞll these relations:

t2
i = (1− q)ti + q, (3)

titj = tjti, |i− j| ≥ 2, (4)

titi+1ti = ti+1titi+1, (5)



The bilinear form B in (8) is our particular choice that guarantees that the following
equations hold:

ρ(ti) = bi := ei ∧ ei+n, (9)

bibj = bjbi, whenever |i− j| ≥ 2, (10)

bibi+1bi = bi+1bibi+1. (11)

This shows ρ to be a homomorphism of algebras implementing the Hecke algebra struc-
ture in the Clifford algebra C!(B, V ).



Notice, that the q -antisymmetrizer is related to the q -symmetrizer by the operation of
reversion denoted by tilde in the Clifford algebra C!1,1, that is, C(12)ò= R(12) and
R(12)ò= C(12). How do we know that q + b1 gives the symmetrizer R(12) ? Notice
Þrst that R(12) is almost an idempotent since

R(12)R(12) = (1 + q)e1 ∧ e5 + q(1 + q) = (1 + q)R(12). (14)

Thus, when we normalize R(12) by dividing it by 1 + q, the new element denoted as
R(12)q will be an idempotent.

R(12)qR(12)q =
(1 + q)e1 ∧ e5 + q(1 + q)

(1 + q)2
=

e1 ∧ e5 + q

1 + q
=

b1 + q

1 + q
= R(12)q.

If we now take the limit of R(12)q as q → 1, we obtain

lim
q→1

R(12)q =
1 + s1

2
(15)

with s1 = e1 ∧ e5 squaring to 1 (in the limit q → 1 ) in agreement with (i) above.
Then the expression 1

2 (1 + s1) acts as a symmetrizer on, for example, functions of two
variables. Likewise, the normalized q -antisymmrali(or)-1l q"as2





non-primitive idempotents. Each of these idempotents generates a three-dimensional
decomposable ideal. To achieve this goal, we can use any two of the following three
equations since any two of them imply the third:

X + Xò = 1, (24)

X2 = X, (25)

XXò = 0. (26)

By doing so, our goal is to Þnd four Young operators known to exist from the general
theory of the Hecke algebras for n = 3 [20, 34]. The four q -Young operators will still
have only one parameter and they will generalize four Young operators of S3 described
in Hamermesh [21] on p. 245. One of them will be a full symmetrizer, another one will
be a full antisymmetrizer, and the other two will be of mixed symmetry.

In the Þrst step, we will Þnd the most general element

X = K11 + K2b1 + K3b2 + K4b12 + K5b21 + K6b121 (27)

in the Hecke algebra HF(3, q) that satisÞes (24). Upon substituting X into (24) we
have found that X must have the following form:

X = ( 1
2 qK2 − 1

2 qK6 + 1
2 + 1

2 qK3 − 1
2 K2 + 1

2 q2K6 − 1
2 K3)1

+K2b1 + K3b2 + K4b12 + (−K4 + qK6 −K6)b21 + K6b121.
(28)

The element X in (28) belongs to a family parameterized by four real or complex
parameters K2, K3, K4, K6. Next we demand that X also satisÞes (25).

After substituting X displayed in (28) into equation (25), we have found six sets of
solutions. The solutions are parameterized by complex numbers satisfying two similar
but different quadratic equations:

(1 + q)z2 + (−q2K4 + K4 + qK2 − 1 + K2)z + K4K2 + K2
2 −K4 −K2

+qK4 − q2K2
4 − qK2

4 − q2K2K4 + qK2
2 = 0,

(29)

(1 + q)z2 + (−q2K4 + K4 + qK2 + 1 + K2)z + K4K2 + K2
2 + K4 + K2

−qK4 − q2K2
4 − qK2

4 − q2K2K4 + qK2
2 = 0.

(30)



r3 =
1

1 + q
+ qK4b1 −K4b2 + K4b12 − (q3K4 + q + K4 − 1)b21

q(1 + q)

− (−K4 + q2K4 + 1)b121

q(1 + q)
,

r4 =
q1

1 + q
+ qK4b1 −K4b2 + K4b12 − (q3K4 − q + K4 + 1)b21

q(1 + q)

− (−K4 + q2K4 − 1)b121

q(1 + q)
,

r5 =
1

1 + q
+ K2b1 + K4b12

− (κ + K2 − qK4 + K4 − q2K2
4 + qK2

2 − q2K2K4 − qK2
4 + K2

2 + K4K2)b2

(K2 + K4 − qK4 + κ)(1 + q)

− (qκK4 + qK2K4 + qκK2 − κK2)b21

q(K2 + K4 − qK4 + κ)
+

(κK2 + qK2
4 )b121

q(−K2 −K4 + qK4 − κ)
,

r6 =
q1

1 + q
+ K2b1 + K4b12

− (q2K2
4 − qK2

2 + q2K2K4 + qK2
4 + α− qK4 + K2 + K4 −K2

2 −K4K2)b2

(−K2 −K4 + qK4 − α)(1 + q)

+
(qK2K4 + qαK4 + qαK2 − αK2)b21

(−K2 −K4 + qK4 − α)q
+

(αK2 + qK2
4 )b121

q(−K2 −K4 + qK4 − α)
.

It can be checked with CLIFFORD that the rank of the set {ri}, i = 1, . . . , 6, is four.
For our purpose we must select any four linearly independent elements, for example
{r1, r2, r3, r5}, which we rename {f1, f2, f3, f4}. It can also be veriÞed with CLIFFORD
that the elements {f1, f2, f3, f4} satisfy the required relations (24), (25), and (26).

We look for the Young operators obtained by one of the fi, i = 1, . . . , 4. Due to the

fact that the representation spaces which correspond to the symmetric Y
(3)

1,2,3 and the

antisymmetric Y
(111)

1,2,3 Young operators respectively are one-dimensional, they cannot
have any free parameters besides q. The full symmetrizer can be given according to KW
as the q -weighted sum of all six Hecke basis elements. However, in our construction
the full antisymmetrizer is deÞned as the reversion of the full symmetrizer, that is,

Y
(111)

1,2,3 := Y
(3)

1,2,3ò, as it was done in dimension two. Then we have:

Y
(3)

1,2,33 3



of the fi elements has to be a sum of a full (anti)symmetrizer and a Young operator of
the mixed type. If we pick f1 we notice that it must contain the full antisymmetrizer,
because when the parameter K4 is replaced with 1/(q + 1) then the re-deÞned f1 (or
the r1 deÞned above) reduces to an expression with alternating signs in the Hecke basis:

1

1 + q
− b1

1 + q
+

qb2

1 + q
+

b12

1 + q
− qb21

1 + q
− b121

1 + q
.

Therefore, by subtracting the full antisymmetrizer Y
(111)

1,2,3 from f1 we Þnd our Þrst

Young operator Y
(21)

1,3,2 of the mixed type:

Y
(21)

1,3,2 = f1 − Y
(111)

1,2,3

=
q1

q + 1 + q2
− (q3K4 + 2q2K4 + 2qK4 − 1 + K4)b1

q3 + 2q2 + 2q + 1

+
(K4q4 + 2q3K4 + 2q2K4 + qK4 + 1)b2

(q3 + 2q2 + 2q + 1)

+
(q3K4 + 2q2K4 + 2qK4 − 1 + K4)b12

(q3 + 2q2 + 2q + 1)

− (K4q5 + K4q4 + q3K4 + q3 + q2K4 + qK4 + q + K4 − 1)b21

(q3 + 2q2 + 2q + 1)q

− (K4q4 + q3K4 + q2 − qK4 + 1−K4)b121

(q + 1 + q2)q(1 + q)
.

(33)

We deÞ



which decompose the unity in the Hecke algebra since f1 + òf1 = 1. It can be easily ver-
iÞed that the Young operators of mixed type decompose into the row-symmetrizer and
the colum-antisymmetrizer in accordance to Hamermesh [21] p. 245. Our expressions
however are different from those in KW.

In order to represent our Young operator Y
(21)

1,3,2 as a product of the row symmetrizer
R(13) and the column antisymmetrizer C(12), we use previously deÞned f1 = r1 to
deÞne C(12) := f1 and compute R(13) from the equation

Y
(21)

1,3,2 = R(13)f1. (36)

Notice that our f1 = r1 is a generalization to S3 of C(12) from S2 displayed in (13).
In an effort to be consistent with our previous discussion of C(12) and R(12), which
were related by the reversion, we will later deÞne C(13) := R(13)ò and require that
R(13) + C(13) = R(13) + R(13)ò= 1. Thus, when we solve (36) for R(13), we get the
following solution:

R(13) =
q1

1 + q
− (−q2 + q2P3 + P3q − 1 + P3)b1

(33+



parameterized only by K4 as follows:

T =
(1−K4 − q3 −K4q + K





where t6, t7, t8 are polynomials.5 With CLIFFORD we have veriÞed that the six ele-
ments in the list S below are linearly independent. As such, they provide a basis for
the left regular representation of the Hecke algebra:

S = [Y
(3)

1,2,3, Y





constructed in the paper corresponding to the Young tableaux conjugate to each other in
the sense of Macdonald and which generate representation spaces of dimension greater
than one, have been related through the reversion in the Clifford algebra C!4,4. This
feature is not present in King and Wybourne.

In HF(2, q) we found that the symmetrizer R(12) and its reverse, the antisym-
metrizer C(12) were primitive idempotents in the Clifford algebra. We found no non-
trivial intertwiners linking these two idempotents.

In HF(3, q) we Þrst found four mutually annihilating idempotents splitting the unity
in the algebra: two without parameters and two parameterized ones. The Þrst two

were the Young symmetrizer Y
(3)

1,2,3, deÞned as in King and Wybourne, and the Young

antisymmetrizer Y
(111)

1,3,2 , deÞned in this paper as the reverse of Y
(3)

1,2,3. The two para-

meterized idempotents were the Young operators of mixed symmetry Y
(21)

1,2,3 and Y
(21)

1,3,2,

and they were also related by the reversion. We were able to factor Y
(21)

1,3,2 into the
row symmetrizer R(13) and the column antisymmetrizer C(12), that is, we were able
to Þnd R(13) as an idempotent element in the Clifford algebra, a feature not found in
King and Wybourne. Furthermore, we related the mixed-type Young operators through
a Þve-parameter family of intertwiners.

We have found a Garnir element G
(21)



Appendix

Polynomials below have been introduced as abbreviation to improve readability of the
formulas displayed in the main text:

p1 = q4K2
4 + 3q3K2

4 −K4q3 + 4q2K2
4 −K4q2 + 3qK2

4

−K4q − q + K2
4 −K4,

p2 = K4q4K6 + q4K2
4 + q3K4K6 − q3K4K2 + K4q2

−q2K2K4 + q2K4K6 + K6q2 + q2K4K5 − q2K2
4

−K2q −K6q + qK4K5 − qK2
4 + K4qK6 −K5q

−qK2K4 −K4q −K2
4 −K4K2 + K4 + K2,

p3 = −K6q3 −K4q3 + K6q2 + K5q2 + K6q + K5q −K6 −K4,

p4 = −K6q2 −K4q2 + 2K6q + K5q + K4q −K6 −K4,

p5 = K4q3 + 2K4q2 + q + 2K4q + K4,

p6 = q5K2
4 + 3q4K2

4 + 4q3K2
4 + K4q3 + 3q2K2

4

+K4q2 + qK2
4 + K4q + K4 − 1,

p7 = −K4q3 − q3K2 + 2K6q2 + K5q2 + K4q2 − 2K6q −K5q

−K4q + K6 + K4,

p8 = q5K4 + q4K4 + q3 + K4q3 − q2 + K4q2 + K4q + K4 − 1,

p9 = q6K2
4 + 2q5K2

4 + 2q4K2
4 + 2q4K4 + 2q3K2

4

+K4q3 + 2q2K2
4 + q2 + 2qK2

4 −K4q − q + K2
4 − 2K4 + 1,

p10 = q3K2 −K6q3 + K6q2 − q2K2 + K5q + K2q −K5 −K6,

p11 = q4K2
4 + 3q3K2

4 + 4q2K2
4 + K4q2 + 3qK2

4

+K2
4 −K4 + 1,

p12 = q5K2
4 + 2q4K2

4 + q3K2
4 + 2K4q3 − q2K2

4

+2K4q2 − 2qK2
4 + 2K4q + q −K2

4 + 2K4 − 1,

p13 = q4K4 + K4q3 + q2 −K4q −K4 + 1,

p14 = q2K2 −K6q2 + K6q −K2q −K4 + K5,

p15 = K4q3 + 2K4q2 − q2 + 2K4q + K4,

p16 = 3K4q4K6 + 3q3K4K6 + K4qK6+ 3q q q$4D
0 Tc
(
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