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equipped with information and skills and is confronted with a cognitively non-trivial task;
that is, the solver does not already know a method of solution.  Seen from this perspective, a
problem cannot be solved twice by the same person, nor is a problem independent of the
solver’s background. In traditional calculus courses most tasks fall more readily into the
category of exercise than problem. However, experienced teachers can often predict that
particular tasks will be problems for most students in a particular course, and tasks that
appear to differ only slightly from traditional textbook exercises can become problems in
this sense.

In this study we used the same two tests as before: a five-problem non-routine test and a
ten-question routine test (see Sections 2.3.1 and 2.3.2).  The second, routine, test was
intended to assess basic skills sufficient to solve the corresponding non-routine problems on
the first test.  This allowed some distinction to be made between the lack of routine skills
and the inability to access such skills in order to develop a solution method for the
associated non-routine problem.

2.  The Course, the Students, and the Tests

2.1 The Calculus/Differential Equations Sequence
The setting is a southeastern comprehensive state university having an engineering

emphasis and enrolling about 7500 students -- the same university of the earlier studies of C
and A/B first-term calculus students [12, 13].  The annual average ACT composite score of
entering freshman is slightly above the national average for high school graduates, e. g., in
the year the data was collected the university average was 21.1, compared to the national
average of 20.6.

A large majority of students who take the calculus/differential equations sequence at this
university are engineering majors.  The rest are usually science or mathematics majors.  A
separate, less rigorous, three-semester-hour calculus course is offered for students majoring
in other disciplines.
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two tests and told he or she need not, in fact should not, study for them.  The students were
told that three groups of ten students would be randomly selected according to their first
calculus grades (A, B, C), and in each group there would be four prizes of $20, $15, $10, and
$5.  The latter was an incentive to ensure that all students would be motivated to do their
best.  Altogether 11 A, 14 B, and 12 C students volunteered and ten were randomly selected
from each group.  Of those, 28 students (10 A, 9 B, and 9 C) actually took the tests: three
mathematics majors and twenty-five engineering majors (nine mechanical, five chemical,
four civil, four electrical, two industrial, and one undeclared engineering concentration).
These majors reflected the usual clientele for the calculus/differential equations sequence.

At the time of the study, all but one of the 28 students tested had taken the third
semester of calculus at this university; the one exception was enrolled in Calculus III and
Differential Equations simultaneously.  Their grades in Calculus III were 5 A, 8 B, 8 C, 4 D,
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In addition, five students had taken complex variables, and another was enrolled in that
course at the time of the study.  One of these five had also taken an introductory matrix
algebra course, as had two other students.  Except for one C, all grades for these students in
these additional mathematics courses were at least B.  In our analysis of the results we will
compare the students who had studied mathematics beyond the calculus/differential
equations sequence with those who had not.

Of the 28 students in this study, 22 (79%) graduated within six years of their admission
to the university as freshmen.  In comparison, for the university as a whole over the same
time period, the average graduation rate within six years of admission was 41%.

As of May 1999, it is known that all but two of the 28 students tested had earned
bachelor’s degrees at this university, three in math and the others in engineering.  In
addition, it is known that five students had earned master’s degrees in engineering and one
had earned an MBA, all at this university.  One student had earned a master’s degree in
mathematics at this university and a Ph.D. in mathematics at another university. There may
be additional accomplishments of these kinds among the 28 students, but they could not all
be traced.2

The students in this study represented 33% of the A’s, 26% of the B’s, and 6 % of the
C’s awarded in Differential Equations that semester, and none of the 30 D’s, F’s and W’s.
In addition, after a minimum of three semesters at this university, these 28 students had a
mean GPA of 3.145 for all courses taken.  Their graduation rate was almost double that of
the university as a whole, and at least 25% of them went on to complete a graduate degree.
By all these indicators, at the time of the study and subsequently, these students were among
the most successful at the university.

2.3  The Tests
Students were  allowed one hour to take the five-problem non-routine test, followed by

half an hour for the ten-part routine test comprised of associated algebra and calculus
exercises. Prior to the non-routine test, the students were told they might find some of the
problems a bit unusual.  No calculators were allowed.  They were asked to write down as
many of their ideas as possible because this would be helpful to us and to their advantage.
They were told A students (in first calculus) would only be competing against other A
students for prizes, and similarly, for B and C students.  They were assured all prizes would
be awarded and partial credit would be given.

Each non-routine problem was printed on its own page, on which student work was to
be done.  All students appeared to be working diligently for the entire hour.  As in the
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2.3.1 The Non-routine Test

1. Find values of a and b so that the line 2x+3y=a is tangent to the graph of
2)( bxxf =  at the point where x=3.

2.    Does x21 + x19 - x -1 + 2 = 0 have any roots between –1 and 0? Why or why not?

3.    Let f(x)=
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. Find a and b so that f is differentiable at 1.

4.    Find at least one solution to the equation 4x3 – x4 = 30 or explain why no such
      solution exists.

5.    Is there an a such that 
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Thus, the differential equations students did perform somewhat better than the first-year
calculus students.

3.2 Comparison of Non-Routine and Routine Test Results:  Did
Students Have Adequate Resources and Use Them?

The routine test was designed to determine whether the students' inability to do the non-
routine problems was related to an inadequate knowledge base of calculus and algebra skills
(i.e., "resources" [10, 11]).  Did the students lack the necessary factual knowledge or did they
have it without being able to access it effectively?  Scores on the corresponding routine
questions (Table 3) were taken as indicating the extent of a student’s factual knowledge
regarding a particular nonroutine problem.  As in [13], a student was considered to have
substantial factual knowledge  for solving a nonroutine problem if that student scored at least
66% on the corresponding routine questions.  A student was considered to have full factual
knowledge for solving a nonroutine problem if that student's answers to the corresponding
routine questions were correct, except possibly for notation, for example, answering (1, -1)
instead of -1 to Question 6.  All others were considered as having less than substantial
factual knowledge.

In Table 4 we give the number of students who exhibited substantial or full factual
knowledge on the corresponding routine questions with the number of students whose
solution to a particular non-routine problem was completely correct or substantially correct.
For example, on Problem 1, 15 (of 28) students had full factual knowledge; of these 5 gave
completely correct and 2 gave substantially correct solutions. An additional ten (of 28)
students had substantial factual knowledge for Problem 1, but none of them gave completely
or substantially correct solutions.  That is, the performance of these ten students on the
routine questions seemed to indicate they had sufficient factual knowledge to solve, or at
least make substantial progress on, Problem 1; yet they either did not access it or were
unable to use their knowledge effectively to make progress.  The remaining three students
demonstrated less than substantial factual knowledge, making a total of 7 students giving
completely or substantially correct solutions on Problem 1.

Taking another perspective, in the 59 routine question solution attempts in which
students demonstrated full factual knowledge, they were able to solve the corresponding
non-routine problem 14 times (24%) or make substantial progress towards its solution 6
times (10%).  Thus, on slightly more than a third of their attempts (34%), these students
accessed their knowledge effectively.  Students with substantial, but not full factual
knowledge, did so on less than a quarter of their attempts.  These results are summarized in
Table 5.  Furthermore, six students showed 
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                                                                       Non-Routine Problem
 1  2  3  4  5

Full Factual Knowledge           15  3  5        14 22

Non-Routine Problem
Completely Correct   5  1  1   0   7
Substantially Correct   2  0  1   0   3

Substantial Factual Knowledge            10 19 12  1   2

   Non-Routine Problem
        Completely Correct    0   2   4   0   0

    Substantially Correct   0   3   1   0   0

Less than Substantial
Factual Knowledge              3  6 11 13   4

   Non-Routine Problem
        Completely Correct    0   0   0   0   0

    Substantially Correct   0   0   1   0   1
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         Full Factual     Substantial, but not full
              Knowledge (59)     Factual Knowledge (44)

      Completely correct     24%   (14/59) 14%   (6/44)
      non-routine solution

      Substantially correct     10%  (6/59)   9%   (4/44)
       non-routine solution

TABLE 5. Overview, giving the percentage of correct solutions by those having the
requisite factual knowledge

In order to compare overall student performances on the routine and non-routine tests,
we introduce the notion of a score pair, denoted {a, b}, where a  is the student's score on the
routine test and b is the student's score on the non-routine test.  In every case, a >b.  Figure
1 shows students' routine test scores in descending order (from left to right); superimposed
below each student’s routine test score is her/his non-routine test score.

The three students with the highest non-routine scores had score pairs of {90, 69}, {85,
59},  and {83, 59}; the first of these subsequently obtained a B.S. in civil engineering,
summa cum laude with a cumulative grade point average of 3.948.  The three mathematics
majors in the study, all of whom had completed at least one additional mathematics course
at the time of the study, had score pairs {95, 34}, {89, 18} and {87, 21}.  That is, they
scored in the top quarter on the routine test, but the latter two scored slightly below than the
mean non-routine score of 21.3.  The last of these three subsequently obtained a Ph.D. in
mathematics from a major state university.

Student performance on the routine and non-routine tests was not improved by having
studied additional mathematics.  The respective mean scores for the eleven students who
had done so were 73.1 (vs. 75.3 for all of the students) and 15.3 (vs. 21.3 for all of the
students).

Figure 1 shows a generally positive relationship between factual knowledge (resources)
and the ability to solve novel problems.  Nonetheless, having the resources for a particular
problem is not enough to assure that one will be able to solve it.  Two students had score
pairs of {86, 4} and {80, 3}suggesting that having a reasonably good knowledge base of
calculus and algebra skills (resources) is not sufficient to make substantial progress on novel
calculus problems.  One student, score pair {83, 59}, lacked substantial factual knowledge
on only those routine questions associated with Problems 2 and 4 (on which he scored zero)
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FIGURE 1.  Upper score is for routine/factual knowledge test.
Lower score is for non-routine test.

4.  Favored Solution Methods

4.1  Non-routine Problem 1.
Find values of a and b so that the line 2x+3y=a is tangent to the graph of  2)( bxxf =  at the point

where x=3.
Fifteen students set the equation of the line equal to that of the parabola and solved for

either a or b.  Eight of these ignored the tangency of the line to the curve.  The remaining
seven also set the derivative of f equal to the slope of the line to obtain a second equation so
a and 
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students, this approach was also used by 20% of the students. Only two students used the
method favored by C calculus students in the earliest study [12]:  factor 4x3 – x4 and set each
factor equal to 30.  Four students took the first derivative, set it equal to zero and stopped.
Several students used synthetic division to check whether particular values were roots.

4.5  Non-routine Problem 5.

Is there an a such that  
32
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 exists?  Explain your answer.

On Problem 5, there were 39% (11 of 28) substantially or completely correct solutions,
whereas for the A/B calculus students, 37% (7 of 19) made substantial progress towards a
solution. Of the 28 attempts, 15 involved the use of L'Hôpital's Rule.  Nine of these
attempts were at least partially successful. In the other six instances students failed to note
that the numerator as well as the denominator must have limit zero before applying
L'Hôpital's Rule.  Five students substituted 3 for x, found the denominator of the expression
to be zero and asserted that no limit could exist since the denominator was zero at the
limiting value of the variable (two of these were math majors).  This was the favored method
of the C calculus students (47% of them used it) and was used by 26% of the A/B calculus
students [12, 13].  Here it was found in just 18% (5 of 28) of the solution attempts.  Six
students struggled, algebraically, with finding a way to factor the numerator so that the (x-3)
in the factored denominator could be cancelled and the limit taken; two of these resulted in
completely correct solutions.

4.6  Summary

4.6.1 Use of calculus
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Where students who successfully solved Problem 1 in the present study were willing to
draw and reject graphs, those in the A/B study who chose to use graphs generally had only
one -- either it was the right one and the solution was substantially or completely correct or
it was an incorrect graph and the solution was incorrect. In the A/B study, 16 graphs were
produced by 12 students on Problem 1 whereas in the present study, 37 graphs were drawn
by 22 students.  Three of the 12 A/B students who used graphs (25%) rejected (crossed out)
one of their graphs (including one who rejected a graph which was correct) while six of the
22 (27%) who used graphing on Problem 1 in this study rejected a graph.  It would appear,
then, that though the more experienced students were more willing to posit graphical ideas
(81% versus 63%) than the less experienced students they were about equally likely to reject
the graphs they produced.
     DeFranco's paper on expert problem solvers with Ph.D.s in mathematics suggests that
the skills possessed by the experts which are often lacking in the non-experts might include a
willingness to create and abandon (reject) and revisit many ideas in the solution process [5].
Thus it might be useful to know how students develop the willingness to risk commiting
graphical and other ideas to paper and to reject such ideas once they have been given life on
paper.

5. Analysis

Reflecting on the three studies, one wonders when, if ever, students learn to use calculus
flexibly enough to solve more than a few nonroutine problems. Furthermore, how could it
happen that students, who were more successful than average by a variety of traditional
measures and who demonstrated full factual knowledge for a non-routine problem, failed to
access and use their knowledge successfully on 76% of their attempts (Table 5)?  Many of
these students (the engineering majors) had almost completed their formal mathematical
educations, except possibly for one or two upper-division mathematics courses, leaving them
limited opportunity in future mathematics courses to improve their non-routine problem-
solving abilities.  Finally, does it matter whether students can solve such non-routine
problems?

5.1.  When do students finally learn to apply calculus flexibly?
It would appear from this sequence of three studies that, at least for traditionally-taught

calculus students in classes of 35-40 students, the ability to solve non-routine calculus
problems develops only slowly.  Performance for the best students went from one third who
could solve at least one non-routine beginning calculus problem toward the end of their first
year of college calculus to slightly less than half who could do so toward the end of the two-
year calculus/differential equations sequence.  In addition, the percentage of correct
solutions increased modestly over the three studies (Table 6).

On the other hand, by the time these students were coming to the end of their
calculus/differential equations sequence their algebra skills seem to be relatively
sophisticated   and  readily  accessible,   albeit  somewhat  flawed.    Such  slow,  incremental
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process-oriented research.   A person who has reflected on a number of problems is likely to
have seen (perhaps tacitly) similarities between some of them.  He or she might be regarded
as recognizing (not necessarily explicitly or consciously) several overlapping problem
situations, each arising from problems with similar features.  For example, after much
exposure many students will recognize a problem as one involving factoring, several linear
equations, or integration by parts, etc.4  Such problem situations act much like concepts.
While these situations may lack names, for a given individual they are likely to be associated
with images, i.e., strategies, examples, non-examples, theorems, judgments of difficulty, and
the like.  Following Tall and Vinner's idea of concept image [16],  we will call this kind of
mental structure a problem situation image and suggest that some such images may, and others
may not, contain what we will call tentative solution starts:  tentative general ideas for beginning
the process of finding a solution. The linking of problem situations with one or more
tentative solution starts is a kind of (perhaps tacit) knowledge.  For instance, the image of a
problem situation asking for the solution to an equation might include "try getting a zero on
one side and then factoring the other."  It might also include "try writing the equation as f(x)
= 0 and looking for where the graph of f(x) crosses the x-axis," or even "perhaps the max of
f is negative so f(x) = 0 has no solution."  We suggest that the problem-solving process is
likely to include the recognition of a problem as belonging to one or more problem
situations, and hence, to bring to mind a tentative solution start contained in one's image of
one of those problem situations.  This may, in turn, mentally prime the recall of resources
from one's knowledge base.  Thus a  tentative solution start may link recognition of a
problem situation with recall of appropriate resources, i.e., what we have called full factual
knowledge.  For example, in this study a number of students tried factoring on Problem 4.
When this approach did not work, had those students' images of such problems included
"try looking at whether the graph crosses the x-axis," they might have recalled their
knowledge of graphs and calculus to discover that the maximum was too small for the
equation to be solvable.  In viewing our data from this perspective,  we are suggesting that
problem situations, their images, and the associated  tentative solution starts all vary from
student to student and that the process of mentally linking recognition (of a problem
situation) to recall (of requisite resources) through a problem situation image might occur
several times in solving a single problem.  We are not suggesting this is the only way access
might occur, just that it could play a role in solving the kind of moderately non-routine
problems discussed in this paper.

Except while taking tests the students in this study would have had worked examples
(from textbooks and lectures notes) available to them during most of their previous
problem-solving attempts.  Those who habitually consulted such worked examples before
attempting their own solutions would have had little occasion to reflect on multiple tentative
solution starts.  Such students might well have problem situation images with few tentative
solution starts, thereby reducing the usefulness of their situation images in priming the recall
of their factual knowledge; this could happen even if they realized a new idea is needed, that
is, even if they did not lack (metacognitive) control [10, 11].   In summary, we are suggesting
that some of the students who were unable to solve non-routine problems while having full
factual knowledge may have lacked a particular kind of knowledge, namely tentative solution

                                                          
4Although the kinds of features noticed by students in mathematical problem situations do not seem to have
been well studied, the features focused on in physics problem situations  have been observed to correspond
to degree of expertise.  Novices tend to favor surface characteristics (e.g., pulleys), whereas experts tended
to focus on underlying principles of physics (e.g., conservation of energy).   [4]
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starts, and this might be due to a combination of the way homework exercises had been
presented and the students' study habits.

Much of our data concerning those students who had adequate factual knowledge, but
did not access it to solve non-routine problems, is consistent with the above analysis.
However, our data do not adequately encode the problem-solving process for this proposed
explanation to be more than a conjecture which might be examined in a future study.

5.3  Does it matter whether students are able to solve non-routine problems?
Perhaps surprisingly, the answer seems to be both yes and no.  No, because the students

in this study were among the most successful at the university by a variety of traditional
indicators, both at the time of the study and subsequently, yet half of them could not solve a
single non-routine problem.  They had overall GPAs of just above 3.0 at the time of the
study and almost double the graduation rate of the university as a whole.  At least seven of
them subsequently earned a master's degree and one a Ph.D. in mathematics.  Furthermore,
the idea that traditional success may not require very much non-routine problem-solving
ability, including metacognitive control, is supported by De Franco's problem-solving study
comparing mathematicians of exceptional creativity (e.g., Fields medallists) with very
successful published Ph.D. mathematicians.  He found that while both were content experts,
only the former were problem-solving experts [4].  Thus, it seems possible to be
academically successful in mathematics and related subjects without being able to
consistently solve non-routine problems, especially the more difficult ones in which
Schoenfeld's problem-solving characteristics (heuristics, control, beliefs [10, 11]) play a large
role.
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not requiring, for example, the consideration of multiple sub-problems.  The non-routine
test in this study consisted of problems of this kind.  Finally, at the opposite end of the
continuum from routine problems, one might place very non-routine problems which, while
dependent on knowledge of the course, may involve more insight, the consideration of
several sub-problems or constructions, and use of Schoenfeld's behavioral problem-solving
characteristics (heuristics, control, beliefs [10, 11]). For such problems a large supply of
tentative solution starts, built up from experience, might not be adequate to bring to mind
the knowledge needed for a solution, while for moderately novel problems it probably
would.   Often the Putnam Examinations [17]  include such very non-routine problems.5

Most university mathematics teachers would probably like students who pass their
courses to be able to work a wide selection of routine, or even moderately routine, problems.
In addition, we believe that many such teachers would expect their better students to be able
to work moderately non-routine problems, and think of this as functionally equivalent to
having a good conceptual grasp and understanding of the course.  In other words, the ability
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