DEPARTMENT OF MATHEMATICS

TECHNICAL REPORT

On the Cardinalities of Row Spaces of Boolean Matrices

Michael Breen and David Hume

Communicated by Boris M. Schein

A Boolean matrix has entries that are 0 or 1. For any $n \in N$, the set of all $n \times n$ Boolean matrices with the operation of matrix multiplication (except that 1+1=1) is a semigroup with the usual identity. This semigroup is denoted B_n . Green's J-relation (on B_n) is dePned as follows: given $A, B \in B_n$, A is said to be equivalent to B, if the principal ideal generated by A equals the principal ideal generated by B. The row space of a Boolean matrix is the set of all Pnite linear combinations of rows of the matrix (where the scalars forming the linear combination are either 0 or 1). We call the cardinality of a row space its row span. Every matrix in a given J-class has the same row span (MargTocl