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see [5,8,9,12].

2. PRELIMINARIES. Let B be a commutative Banach algebra (not necessarily

unital), and let G be a locally compact Abelian group with Haar measure m. Throughout

the following, the dual group of G is denoted by Γ and the spectrum of B is denoted by

∆(B). Let L1(
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(i) f ⊗ x ∈ L1(G, B), and kf ⊗ xk1 = kfk1kxk

(ii) (f ± g) ⊗ x = f ⊗ x± g ⊗ x

(iii) \f ⊗ x(γ) = àf(γ)x

(iv) (f ⊗ x) ∗ (
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Proof. By Lemma 3.1, there exist f1, f2, . . . , fn in L1(G) with compactly supported

Fourier transforms, and x1, x2, . . . , xn in B such that

kf −
nX

i=1

fi ⊗ xik <
²

2
+ k àf(γ)k

where àfi(γ) = 0. Since L1(G
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to P . For, if g belongs to L1(G) with àg(γ) 6= 0, àg = 0 on Γ − V , and x a non-zero vector

in B, then (g ⊗ x) ∗ f = Θ (the zero vector of L1(G, B)). Since P is a prime ideal of

L1(G, B), either g ⊗ x ∈ P or f ∈ P. But àg ⊗ x(γ) = àg(γ)x 6= θ. Hence f ∈ P . Thus

all the functions f in L1(G, B) with vanishing Fourier transforms in a neighborhood of γ

belong to P . Hence by Lemma 3.2, it follows that P is dense in Mγ . This completes the

proof of the theorem. ¥

Theorem 3.5. Let G be a noncompact locally compact Abelian group, and B be a

commutative Banach algebra. If P is a closed prime ideal of L1(G, B) contained in Mγ,φ

for some γ ∈ Γ, and φ ∈ ∆(B), then P contains Mγ . Furthermore P does not contain Mσ

for any σ 6= γ.

Proof. Let f ∈ Mγ . By Corollary 3.3, f can be approximated by a function g in L1(G, B)

with vanishing Fourier transform in a neighborhood V of γ. By an argument similar to

the one given in Theorem 3.4, we can show g ∈ P. Since P is a closed ideal, it follows

that f ∈ P . Thus Mγ is contained in P. Let σ ∈ Γ such that σ 6= γ. Suppose Vσ and Vγ

are compact neighborhoods of σ and γ respectively such Vσ ∩ Vγ = ∅. Then there exist

functions fσ and fγ from G into the complex plane with the support of àfσ contained in Vσ

and the support of àfγ contained in Vγ such that àfσ(σ) = 1 and àfγ(γ) = 1. Let x, y ∈ B

such that φ(x)φ(y) 6= 0. Then fσ ⊗x, fγ ⊗ y ∈ L1(G, B) such that (fσ ⊗ x) ∗ (fσ ⊗ y) = Θ.

Since P is a prime ideal contained in Mγ,σ, we get fσ ⊗ x ∈ P. Obviously fγ ⊗ y 6∈ P.
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epimorphism h form a commutative Banach algebra X onto A, let =(h) =: {a ∈ A| there

is a sequence {xn} in X with xn → 0 and h(xn) → a}. It is easy to show that =(D),and

=(h) are closed ideals of A. By the closed graph theorem D is continuous if and only if

=(D) is zero. Similarly h is continuous if and only if =(h) is zero. It is well known that

=(D) and =(h) are separating ideals of A ([13]). For further information on separating

ideals, their relation to the prime ideals of the Banach algebra, and for related results on

automatic continuity theory, see [1,2,3,4,6,10].
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some γ ∈ Γ. Let ΓM∆ = {γ ∈ Γ|Mγ ⊆ P for some P ∈ M∆}
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